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EXECUTIVE SUMMARY 

In 2014, the Minnesota Department of Public Safety (DPS) reported 15,648 crashes occurred on 

Minnesota freeways. These crashes accounted for the death of 38 people and the injury of 5,031 people 

(3). Rear-end crashes are a typical type of crash on freeways. Although, rear-end crashes can happen 

any time there is a disturbance, research has shown (4) that there are traffic conditions that are 

associated with collisions, specifically rear-end collisions. Prior studies have shown that such crash prone 

traffic Conditions (CPCs) can be detected over other traffic conditions encountered on freeway traffic. 

The research described in this report aimed to develop and field test two queue warning systems using 

different philosophies in regard to rear-end collision safety. The first system’s philosophy, follows the 

premise that freeway rear-end collisions tend to occur in extended stop-and-go traffic or at end-of-

queue locations (29). Such unconditional queue warning systems usually provide warning messages in 

an unselective manner, i.e., react to all the queues based on the assumption that all propagating queues 

are dangerous and drivers should be warned. Conditions on I-35W southbound in Minneapolis, MN, 

support this hypothesis, and it is there where the first system prototype was developed and deployed. 

This system was developed by a research team lead by Dr. Henry Liu at the University of Michigan. The 

second queue warning system is based on the hypothesis that not all congestion events are dangerous 

but there are certain traffic conditions that are crash prone regardless of whether they result in standing 

queues or not. Such CPCs can be isolated, fast moving shockwaves, involving only a small number of 

vehicles in the deceleration-stop-acceleration cycle. For such conditions, a much more dense detection 

infrastructure is needed. One location where such conditions have been identified and result in more 

than 100 crashes per year is the westbound section of I-94 in downtown Minneapolis. In this location, 

the Minnesota Traffic Observatory has had a permanent Field Lab since 2002. Based on the framework 

proposed by Dr. Hourdos (4), this effort approaches the topic from the quantification of traffic flow to 

the multi-layer system design along with different approaches including traffic assessment modeling and 

the development of control algorithms. This approach utilizes individual vehicle measurements including 

individual vehicle speeds and time headways, as the major type of data for the system operation. The 

prototype of a CPC detection-based queue warning system was developed by a research team lead by 

Dr. John Hourdos at the University of Minnesota. 

I-94 WB Queue Warning System Description and Results 

The I-94 CPC Queue Warning system follows a three-layer design. The crash probability layer collects 

real-time individual vehicle measurements and processes them to remove noise. The filtered data then 

pass to the crash-probability model to assess the likelihood of a crash. This crash likelihood along with 

additional traffic information, such as speeds and headways, are passed to the second layer, the 

algorithm layer. In this layer, the algorithm decides if a warning message should be generated by 

comparing the crash probability with preset thresholds and real-time traffic conditions. A decision of 

whether to raise or drop the alarm is being generated and passed to the third layer, system control, in 

which requirements from policy makers are applied to modify the result before delivering it to the 

message sign in the field. Specifically, as part of the terms for the deployment of the system, two 

overrides were included and the preexisting MnDOT signs’ refresh rate was kept. Two sets of Intelligent 



 

 

Lane Control Signs (ILCSs) are used to communicate the warnings to the drivers. The overrides are 

intended to limit possible overexposure of drivers to the warning by what was, at the time of 

implementation, an unproven system and consist of a time override and a congestion override. The time 

override prevents the sign from being turned on, regardless of the alarm status before noon or after 8 

p.m. The congestion override also prevents the sign from being turned on when five consecutive 30-

second average speed measurements at the loop detector near the farthest upstream sign are below 25 

mph. This override is intended to reduce driver overexposure to the warning by not displaying a warning 

when drivers are already travelling slowly. The rate at which the sign is updated is a result of the sign 

being part of the MnDOT Twin Cities metro-wide network. Initial activation can vary from a few seconds 

to one minute, depending on the synchronization between the independent queue warning system and 

the traffic operations system that controls the signs. This delay amplifies short gaps in the alarm 

activation.  

To obtain the ground truth on which the I-94 system was evaluated, event observations were collected 

during a three-month evaluation period (from June 2016 to August 2016). This involved manual 

reduction of video from multiple cameras recording crashes and near-crashes, as well as the exact times 

the sign changed states. Data from 55 weekdays with sufficient video footage in this period were used 

to establish ground truth. Some weekdays were excluded due to corrupted video files or equipment 

maintenance. Based on the ground truth established, detection rates under different system conditions 

were calculated. To assess the performance of the system, the detection rate of all conflict events 

between 3rd Ave and Chicago Ave during the three-month evaluation period was calculated separately 

for the control algorithm and for the system as a whole. The detection rate was calculated for just the 

crashes, near crashes, and both events combined. To find the actual number of conflict events, all the 

events observed during the evaluation period were tabulated and sorted based on whether the drivers 

involved were warned or not warned about crash-prone conditions before the event, and if not, 

separated by the reason for such failure. 

Detecting Component Event Type 

 Crashes Near Crashes Both 

 [%] [%] [%] 

Algorithm (9 a.m. to 8 p.m.) 76.3 79.3 78.6 

Whole System (9 a.m. to 8 p.m.) 39.5 51.9 49.0 

Algorithm (noon to 8 p.m.) 73.5 74.6 74.3 

Whole System (noon to 8 p.m.) 44.1 63.6 59.2 

The control algorithm is far more successful at raising the alarm for events than the system as a whole. 

The noon to 8 p.m. group illustrated the effect of the congestion override, a subject that was raised as a 

concern to MnDOT. A 2013 study recorded crashes that occurred between MN 65 and Portland Ave. 

These results are compared to the 2016 events that occurred in the same region. Based on the 

comparison of the two periods, there was a 22% decrease in crashes and a 54% decrease in near crashes 

in that zone following the implementation of the I-94 CPC Queue Warning system. 



 

 

Observation Zone MN 65 to Portland Ave % Reduction 

Observation Year 2013 2016 2013 vs 2016 

Crashes 11.9 9.34 -22% 

Near Crashes 111.8 51.8 -54% 

MnDOT is considering the results from the I-94 CPC Queue Warning system promising and is considering 

an extended evaluation to look at the long-term effects of the system on crash rates. 

I-35W SB Queue Warning System Description and Results 

The I-35W SB Queue Warning system developed by Dr. Liu utilizes data collected from five sets of 

Systematic Monitoring of Arterial Road Traffic Signal (SMART-Signal) systems installed on MnDOT 

detector cabinets. The SMART-Signal system collects and archives high-resolution vehicle-detector 

actuation events. Each event contains the timestamp and occupancy time of one vehicle as well as the 

ID of the corresponding detector. The difference between the arrival times of consecutive vehicles gives 

the headway for these two vehicles and taking the occupancy time out of the headway gives the gap 

between these two vehicles. Based on the real-time data collected from detectors, the Michigan Queue 

Warning Algorithm (MQWA) can “see” a queue when it travels to the position of a detector. Although 

traffic states from detectors upstream and downstream of the queue occurrence position give some 

implication of the jam, it is risky to predict the occurrence of queue before it reaches a detector because 

such prediction easily generates false alarms. Therefore, instead of capturing the exact occurrence time 

and location of every stopped queue, the MQWA works to monitor the queue once it is seen by 

detectors. For those queues starting from in-between positions and propagating to detectors, lags in 

response arise but the MQWA provides a more robust solution than capturing the exact occurrence time 

and location of every stopped queue. For queues not propagating to detectors, the MQWA omits them 

because of their limited influence in space and time. Instances of the MQWA can run locally in any 

freeway segment between two detectors, estimating the length and duration of a queue once it is 

detected by the downstream detector. Moreover, considering the difference of traffic states across 

lanes (e.g., lanes to different directions of a diverge junction), one instance of the MQWA can run for 

each lane. The MQWA has limited capability of prediction about the time when a queue will be formed 

or cleared at any position in this segment, or the queue length in this segment at any time in the near 

future.  

The MQWA was implemented on a 2,218-foot-long I-35W SB segment between 50th and 60th Streets in 

South Minneapolis. The system was tested in the field for three weeks, showing the queue warning 

message “SLOW TRAFFIC AHEAD” to travelers when a queue was estimated at downstream locations. 

Before that, the system had also been running for three weeks without actually showing messages. The 

high-resolution data from loop detectors, the queue warning system log files archiving the start time, 

duration and location of triggered messages (including those not shown on the ILCS before field test), 

and videos from MnDOT cameras were used to evaluate the queue warning system. Based on the 

before and after data collected, the mean value and standard deviation of speed was calculated for each 

detector and for each message, and then a hypothesis testing was carried out to see whether there was 



 

 

a significant change before and after the deployment of the system. Based on this evaluation 

methodology the following conclusions were drawn: 

1. In general, travelers on I-35W did respond to the queue-warning message “SLOW TRAFFIC AHEAD” 

and the traffic conditions with and without messages showed statistically significant differences. 

2. The MQWA was able to smooth traffic by reducing the speed variance at downstream locations and 

speed difference between upstream and downstream locations, and therefore reduced the risk of 

rear-end crash and potentially improved mobility.  

3. It took travelers some time from seeing the messages to taking actions such as slowing down their 

vehicles. Consequently, queue warning messages had little to do with the traffic conditions near the 

ILCS gantry (50th Street) but had an evident impact on the traffic at downstream locations (Diamond 

Lake Road).  

4. The standard deviation of speed at the bifurcation location was increased when the traffic 

condition farther downstream locations on TH-62 was continuously congested. This might be 

because the traffic state in this case was more influenced by the downstream congestion rather 

than the upstream arrival, which made the queue warning message not very effective. 

5. There was no significant difference between the effect of warning message in the morning peak 

and that in the evening peak. 

At the time of the writing of this report, both queue warning systems were still in operation. Starting in 

April 2018, the I-94 WB segment where the CPC Queue Warning system was operating will be under 

construction for three years. MnDOT has expressed the desire to implement two instances of the CPC 

Queue Warning upstream of the construction zone to alleviate concerns of rear-end collisions generated 

from congestion shockwaves due to capacity reduction in the work zone. 
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 INTRODUCTION 

As the world’s population continues to rise, roadways are utilized to and beyond the limits for which 

they were designed. This destabilizes traffic on freeways and produces dangerous driving conditions. In 

2014, US officials reported the occurrence of 6.1 million crashes. These crashes injured 2.3 million 

people and killed 32,675 people (1). According to the Minnesota Department of Transportation 

(MnDOT), the average cost of a single crash is $7,600 when it involves only property damage, $83,000 to 

$570,000 when it involves injury, and as high as $10.6 million when the crash is fatal (2). In 2014, the 

Minnesota Department of Public Safety (DPS) reported 15,648 crashes occurred on Minnesota freeways. 

These crashes accounted for the death of 38 people and the injury of 5,031 people (3). Rear-end crashes 

are a typical type of crash that occurs on freeways. Although, rear-end crashes can happen any time 

there is a disturbance, research has shown (4) that there are traffic conditions that are associated with 

collisions, specifically rear-end collisions. Prior studies have shown that such crash prone traffic 

conditions (CPCs) can be detected and differentiated from other freeway traffic conditions encountered. 

Discerning what factors influence crash rates and the way in which they do so has been the aim of many 

research projects. Qiu and Nixon (5) reviewed the effects of weather on the likelihood of a crash. 

Kopelias et al. (6) studied how the combined effects of geometric, operational, and weather factors 

influence crash frequencies. Traffic on urban freeways, however, tends to react differently to those 

factors. Golob and Recker (7) found that although collision with objects and the crashes of multiple 

vehicles are more frequent on wet roads, rear-end crashes are more likely to occur on dry roads with 

good visibility. They proposed that these rear-end crashes are highly correlated to large differences in 

individual speed like those seen in “stop-and-go” traffic. Such traffic conditions are often referred to as 

traffic shockwaves or traffic oscillations. Zheng et al. (8) studied the effects of traffic oscillations on 

freeway crashes and found that traffic oscillations and congestion are highly correlated to freeway 

crashes. 

Various crash-prediction models (9-14) have been developed using the aforementioned factors. In such 

models, crash probability is used as a measure of the likelihood of a crash. Significant association has 

been shown between crash probability and traffic conditions. Hourdos et al. (4) utilized crash probability 

to detect CPCs on a freeway in Minneapolis, MN. While different approaches to apply crash-prediction 

models in real-time environments have been proposed (14-16), implementation of such models into 

real-time systems is rare.  

A common application for dynamic queue warning systems is in work zones where the reduced capacity 

of the roadway cannot accommodate normal traffic volumes. Two systems designed for this application 

employ several sensors along the road upstream of the construction zone to detect the location of the 

upstream end of the queue. The first queue-warning system (17) uses live remote traffic microwave 

sensor (RTMS) data from two sensors (one immediately upstream of the work area and one at the end 

of the work area) to extrapolate the location of the back of the queue. The location of the back of the 

queue is then displayed on a portable changeable message sign (PCMS) at the location of the upstream 
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sensor. The second queue-warning system (18) uses up to eight speed sensors spread out over seven 

miles to detect queues. The system warns drivers approaching the work zone of any queues present 

through several upstream PCMSs. The Texas Department of Transportation used the eight-sensor 

system in a 96-mile project and found it lowered crash rates by as much as 47% when compared to an 

estimate of what they would have been had the system not been deployed. 

For metropolitan areas where congestion is commonplace, slightly different approaches are often 

employed. One system in Houston, TX, (19) uses machine vision detectors (MVDs) to measure the 

speeds of vehicles approaching the area in which congestion generally occurs. When the system detects 

three consecutive vehicles with speeds lower than 25 mph, lights flash above a warning sign. Pesti et al. 

report decreases of 2% to 6% in vehicle conflicts when this queue warning system is in place.  Another 

queue warning system deployed on a congestion-prone freeway is in Eugene, OR (20). The system 

measures freeway occupancy using three side-fire, dual-beam traffic detectors. When the freeway 

vehicle occupancy exceeds thresholds established by the Oregon Department of Transportation (ODOT), 

warnings are displayed on the Portable Changeable Message Signs (PCMSs) until the occupancy no 

longer exceeds the threshold along with a minimum display time of 5 minutes. The system is reported to 

have decreased the crash rate by over 35%. 

The United States Department of Transportation (USDOT) is currently developing a connected-vehicle 

traffic management system called Intelligent Network Flow Optimization (INFLO) that incorporates 

queue warning components but it has not been deployed to date (21). The system relies on vehicle-to-

infrastructure communication to share traffic data for the purpose of warning drivers of queues, 

harmonizing speed limits, and coordinating cruise control speeds of platooning vehicles. This report 

presents the design, specification, implementation and evaluation of two infrastructure-based queue 

warning systems that are capable of detecting dangerous traffic conditions, i.e., crash-prone conditions, 

on freeways and delivering warning messages to drivers, in order to increase their alertness to these 

traffic conditions and ultimately reduce the crash frequency on urban freeways. 

The two queue warning systems were developed and field-tested using different philosophies in regard 

to rear-end collision safety. The first system’s philosophy, shared by most of the aforementioned 

systems, follows the premise that freeway rear-end collisions tend to occur in extended stop-and-go 

traffic or at end-of-queue locations (29). Such unconditional queue warning systems usually provide 

warning messages in an unselective manner, i.e., react to all the queues based on the assumption that 

all propagating queues are dangerous and drivers should be warned. Conditions on I35W southbound in 

Minneapolis, MN, support this hypothesis and it is there where the first system prototype was 

developed and deployed. This system was developed by a research team at the University of Michigan 

lead by Dr Henry Liu and is described in Chapter 3. The second queue warning system is based on the 

hypothesis that not all congestion events, forming queues are dangerous but there are certain traffic 

conditions that are Crash Prone regardless of whether they result in standing queues or not. Such CPCs 

can be isolated, fast-moving shockwaves involving only a small number of vehicles in the deceleration-

stop-acceleration cycle. For such conditions, a much denser detection infrastructure is needed. One 

location where such conditions have been identified and result in more than 100 crashes per year is the 
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westbound section of I-94 in downtown Minneapolis, MN. In this location, the Minnesota Traffic 

Observatory has had a permanent Field Lab since 2002. Based on the framework proposed by Hourdos 

(4), this effort approaches the topic from the quantification of traffic flow to the multi-layer system 

design along with different approaches, including the traffic assessment modeling and the development 

of control algorithms. This approach utilizes individual vehicle measurements, including individual 

vehicle speeds and time headways, as the major type of data for the system operation. A prototype of a 

CPC detection based queue warning system was developed by a research team at the University of 

Minnesota led by Dr. John Hourdos and is described in Chapter 2 of this report.  
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 DEVELOPMENT AND FIELD DEPLOYMENT OF A 

QUEUE WARNING SYSTEM ON I-94 WB BASED ON DETECTION 

OF CRASH-PRONE CONDITIONS  

This report presents the design, specification, implementation, and evaluation of an infrastructure-

based queue warning system (QWARN) that is capable of detecting dangerous traffic conditions, i.e., 

crash-prone conditions (CPCs), on freeways and delivering warning messages to drivers to increase their 

alertness in these traffic conditions and ultimately reduce the crash frequency on urban freeways. This 

effort approaches the topic from the quantification of traffic flow to the multi-layer system design along 

with different approaches including the traffic assessment modeling and the development of control 

algorithms. This report presents the QWARN system architecture and deployment and introduces a new 

approach to evaluating efficiency the proposed system that is not bound by the constraints of traditional 

evaluation indexes such as false alarm rate. This study utilizes measurements of individual vehicle 

speeds and time headways at two fixed locations on the freeway mainline as the main source of data for 

the system’s operation. Finally, the report concludes with an evaluation of the proposed system 

implemented on a freeway section with a high crash frequency. The queue warning system was 

implemented in the right lane of a 1.7-mile-long freeway segment of westbound Interstate 94 (I-94 WB) 

near downtown Minneapolis where the event frequency prior to the system’s installation was 11.9 

crashes per million vehicles traveled(MVT) and 111.8 near crashes per million vehicles traveled(MVT). 

Machine Vision Detectors (MVDs) installed on a nearby rooftop captured the real-time vehicle data. The 

data were delivered to a server running the main control algorithm at the Minnesota Traffic Observatory 

(MTO) via MTO’s communication network. The control algorithm assesses the “dangerousness” of the 

given traffic conditions and responds with a warning result based on a multi-metric traffic evaluation 

model and a control-reasoning heuristic. 

2.1 STUDY SITE AND AVAILABLE DATA 

To best study crashes, conditions must be observed and measured before, during, and shortly after an 

actual event. This requirement translates to a need for continuous monitoring and data collection at a 

location that maximizes the probability of capturing crashes on camera. 

In the Minneapolis-Saint Paul Metropolitan Area (Twin Cities), I-94 connects the two cities and is the 

major freeway corridor connecting the two banks of the Mississippi River in the region. The site of this 

study is a segment with a length of 1.7 miles on I-94 WB near downtown Minneapolis. This segment of I-

94 is near the exit of I-35W, the west branch of Interstate 35 that runs through Minneapolis. The close 

proximity to the downtown area results in a large traffic volume merging in and out these two freeways. 

The combination of such a large vehicle volume and great degree of merging often destabilizes traffic on 

this freeway segment thereby causing shockwaves where drivers need to reduce their speed in a short 

time and space or, when drivers fail to decrease their speed quickly enough, rear-end crashes. According 

to MnDOT records, this segment had the highest crash rate in the entire Minnesota freeway system. In 

2002,  the site exhibited 4.81 crashes per million vehicle miles (MVM) – equivalent to approximately one 
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crash every two days – while the network average is 0.96 crashes per MVM. During the PM peak period, 

the aforementioned site exhibited an average of 15.43 crashes/MVM whereas the entire I-94 freeway 

experienced only 3.29 crashes/MVM (81)].  Fatalities and severe injuries are very rare since the 

prevailing speed during CPCs is relatively low. The majority of crashes result only in property damage. 

 

Figure 2.1 Aerial view of implementation site. 

The crash-prone section of I-94 WB runs parallel to I-35W and short ramps allow transfers between 

freeways (Figure 2.1). The freeways and cross streets are labeled.  The changeable message boards are 

denoted by the red circles and the high-volume on-ramp is enclosed by the green rectangle. The site 

includes two on-ramps, three off-ramps, three main lanes, and two 3,000-foot auxiliary lanes – one in 

each of the two areas where weaving is common (just downstream of the green rectangle and between 

the two red circles in Figure 2-1). Weaving is excessive where high volumes enter from the ramp 

(outlined by the green rectangle in Figure 2-1) which combines traffic from Minnesota State Highway 65 

(MN 65) and the downtown business center to the north with I-94. In addition to the traffic volume 

entering the rightmost lane from the ramp, many drivers on I-94 merge right in order to be in or near 

the rightmost lane in anticipation of the two off-ramps downstream of Lasalle Ave. During periods of 

congestion, shockwaves generally originate when vehicles merge onto I-94 from the aforementioned 

ramp and cause vehicles in the rightmost lane to brake. If conditions are sufficiently dense, one vehicle 

entering from the ramp can initiate a chain reaction of vehicles braking that grows into a shockwave 

that causes increasingly intense braking as it moves upstream. Due to vertical and horizontal curves, 

vehicles between Chicago Ave and Portland Ave have limited forward sight distance. Drivers’ inability to 

see a shockwave approaching forces them to rely heavily on their reaction time to avoid rear-ending the 

vehicle ahead of them.  

In an attempt to reduce the number of shockwaves, a double white line was extended by 1000 feet from 

the point where the ramp joins I-94 to the region between 1st Ave S and Nicollet Ave. The intent was to 

prohibit merging for another 1000 feet in order to move the merging zone to an area with longer 

forward sight distances and make it easier for drivers on the ramp to match the speed of traffic on I-94. 

While this solution reduced the severity of the crashes, it did not reduce their frequency. 

In 2002, for the purposes of projects related to intelligent transportation systems (ITS), a traffic 

detection and surveillance laboratory was established as part of the Minnesota Traffic Observatory 

(MTO) at the University of Minnesota. Hourdakis et al. (22) report details of the site instrumentation and 
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capabilities. Because the site is close to the downtown area, nearby high-rise buildings allowed for the 

installation of several cameras and MVDs overlooking the roadway. While most of the sensors are not 

utilized by the queue warning system, they provide the means of collecting detailed observations and 

determining ground truth.  

As shown in Table 2-1, different types of data were used across this study. Individual vehicle 

measurements of speed and time headway were used for the operation of the system and aggregated 

traffic speed data from loop detectors serve for system adjustment and system evaluation. In order to 

collect the necessary individual vehicle data cost-effectively and unobtrusively, MVDs were utilized 

(Figure 2.2). Due to the high concentration of conflict events at the test site, only two such sensors 

stations were necessary, one placed at the location of the most frequent crashes (right) and the second 

approximately 750 feet downstream (left).  The two stations were deployed between 3rd Ave and MN 

65 and between MN 65 and Portland Ave.  

Table 2-1 Summary of data types and purpose 

Data Type Source Purpose 

Aggregated Traffic Data Real-Time 
Loop 

Detector 

Additional input for system 

adjustment 

Aggregated Traffic Data Historical 
Loop 

Detector 

Developing of system 

evaluation methodology 

Individual Vehicle 

Measurements 
Real-Time MVD The main input of the system 

Individual Vehicle 

Measurements 
Historical MVD 

Algorithm and system design 

and development 

Traffic Event Data Historical Video 

System evaluation 

methodology development, 

algorithm and system  

development 

 

 

Figure 2.2 Machine Vision Sensors 
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This study also utilized MnDOT in-pavement loop detectors to provide 30-second volume and occupancy 

data to provide additional information for system adjustment from policy-makers. Five surveillance 

cameras were also employed: four atop a high-rise building to capture vehicle conflict events between 

3rd Ave and Chicago Ave on video and one atop a pole to capture live video of the MnDOT changeable 

message boards at the 11th Ave gantry (rightmost red circle in Figure 2.1). Video from all five cameras 

was captured and saved digitally from 9 a.m. to 8 p.m. every day. Vehicle data from the loop detector is 

collected 24 hours a day, 7 days a week whereas the individual vehicle measurements were only 

collected between 7 a.m. and 8 p.m. each day. Traffic event data extracted from these surveillance 

videos were used to measure the performance of the proposed system in a real-world context. 

2.2 TRAFFIC MEASUREMENTS AND METRICS 

Several metrics are calculated using individual vehicle information such as speed and headway in order 

to quantitatively describe traffic conditions. While individual vehicle measurements hold the benefit of 

providing very high-definition data, they also carry large amount of stochastic noise. This fact brings 

about the paradox that although aggregation can reduce the impact of noise, it also results in loss of 

detailed information. Increasing the resolution to compensate for aggregation tends to cause more 

noise. Traditionally, individual vehicle measurements are aggregated in time to produce averages. While 

the time-aggregated data has less noise, it can no longer describe both the temporal and spatial nature 

of different traffic flow conditions.  

In order to obtain detailed information without much noise, a multi-metric approach was utilized in this 

study to aggregate the data into different traffic metrics. This approach reduces the impact of noise by 

aggregating individual vehicle measurements over space and time while the combination of different 

metrics attempt compensates for the loss of information during the aggregation and quantifies more 

characteristics of the traffic flow. To that end, Hourdos et al. (4) proposed a series of traffic metrics 

derived from individual vehicle measurements, both temporal and spatial, to detect CPCs in freeway 

traffic. Variations of metrics were also introduced to reflect aggregation over time and space. These 

metrics include average speed, coefficient of variation of speed, traffic pressure, kinetic energy, 

coefficient of variation of time headway, coefficient of variation of space headway, acceleration noise, 

mean velocity gradient, quality of flow index, and a number of heuristic metrics calculated with data 

from multiple detectors.  

Generally, a moving average window approach was utilized in this study to perform the translation from 

individual vehicle measurements to the aforementioned metrics. Given a sequence of individual vehicle 

speeds and their respective time stamps, the subset of data needed for the calculation of specific traffic 

metrics is selected based on the prior time shift and the size of the window. Window size represents the 

number of vehicles in a window. The prior time shift determines the location of the moving window and  

is determined by the length of time between the last vehicle in the window and the latest vehicle data 

collected in the real-time system. With these two parameters, a sample of speeds can be selected for 

the calculation. In this study, window sizes (in the units of number of vehicles included) were chosen 

from the set {15,30,40,50,60,70,80,100,110,120}   and prior time shifts (in seconds) were selected from 
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the set {10,30,60,120,180,240,300}. The variations in temporal and spatial metrics that follow will be 

denoted in the form Metric-Location-Lane-Window_size-Window_end_time. For example, AvgSp-Down-

R-15-30 denotes the average speed among 15 vehicles on the right lane of the downstream station at 

least 30 seconds ago. 

2.2.1 Temporal Metrics 

The following are the definitions of a few of the metrics used in the estimation of the crash probability. 

2.2.1.1 Average Speed 

Average speed is a common and informative statistic and helps reduce stochastic noise.  

2.2.1.2 Coefficient of Variation of Speed (CVS) 

In addition to averaging, standard deviation is also a popular way to account for data dispersion. The 

coefficient of variation, also called relative standard deviation, standardizes the actual standard 

deviation by its sample mean. The CVS is the product of the standard deviation and the mean value of 

the speed. As its definition implies, a higher value of the coefficient of variation of speed means higher 

variability in the speed data. 

2.2.1.3 Coefficient of Variation of Time Headway (CVTH) 

The time headway (TH) between vehicles is an important metric that describes safety and level of 

service. TH calculation requires individual vehicle arrival times at a point and is simply the difference 

between the arrival times of two successive vehicles. For the purposes of this research, the actual time 

headways are not as important as the magnitudes and rates of their change, so the chosen metric is the 

coefficient of variation of TH in a group of n vehicles. 

2.2.2 Spatial Metrics 

2.2.2.1 Density 

Density (k) is defined as the number of vehicles per unit length of road. It is an important characteristic 

of traffic flow in many models describing its relationship with speed. There are several different models 

that measure density such as a linear model by Greenshields, a log model by Greenberg, an exponential 

model by Underwood, and many others. In this report, density is not used directly but rather as a 

component in the calculations of other traffic metrics such as traffic pressure and kinetic energy. 

2.2.2.2 Acceleration Noise 

Acceleration noise is a measure of the smoothness of the traffic flow based on an estimation of 

individual acceleration dispersion. Three factors are highly related to the value of acceleration noise: 
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driver behavior, road conditions and geometry, and traffic conditions. The calculation of the 

acceleration noise in this study follows the approximation proposed by Jones and Potts (23). 

2.2.2.3 Mean Velocity Gradient 

In order to differentiate between different traffic conditions with similar acceleration noise, such as 

slow, congested traffic versus fast traffic inside a shockwave, Helly and Baker (24) proposed another 

measurement, the mean velocity gradient, described by Equation 2.1.  

1
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MVG
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(2.1) 

Where 

:MVG Average Mean Velocity Gradient 

:iMVG  Mean Velocity Gradient of vehicle i 

:N The total number of vehicles in a hypothetical mile 

( ) :iAN  Acceleration Noise 

:iu  Average speed (mean velocity) of vehicle i 

2.2.2.4 Quality of Flow Index 

The quality of flow index proposed by Greenshields (25) provides a quantitative metric to describe the 

safety of the traffic conditions on a given road based on the number of speed changes and their 

frequency (Equation 2.2). 
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Where 

:QFI Average Quality of Flow Index 

:iQFI Quality of Flow Index of Vehicle i 

:N Total number of vehicles in a hypothetical mile 

:u Average speed 

:u Absolute sums of speed changes in a mile 

:f Number of speed changes in a mile 

:k Constant of 1000 when speed unit is mph and the length of the section is one mile. 

2.2.2.5 Traffic Pressure 

Traffic pressure (TP) was designed to measure the smoothness of traffic flow. It is defined as the product 

of speed variance and density (26) as seen in Equation 2.3a. A higher density is generally associated with 

a lower average speed. When both the density and the variance of speed are high, it may indicate a 

“stop-and-go” traffic that could be dangerous and crash prone. 

2

sTP k   (2.3a) 

Where 

:TP  Traffic Pressure 

2

s : Speed variance 

:k  Density 

2.2.2.6 Kinetic Energy (KE) 

Kinetic Energy is a familiar quantity in the world of physics that represents the energy of a moving 

object. This measurement can also be modified to quantify the energy stored in the traffic flow. In the 

context of traffic flow, kinetic energy measures the energy in the motion of the traffic stream. 
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Similar to the concept of energy used in physics, the total amount of “energy” in a traffic system cannot 

change but can be converted to another form. Drew (27) described the antithesis of kinetic energy as 

internal energy or erratic motion due to the road geometry and vehicle interactions that corresponds to 

an earlier description of acceleration noise. Please note that the “kinetic energy” in this study is for 

traffic flow and is different from the kinetic energy of a moving object, which means it is not dependent 

on the mass of vehicles but instead on the density of the traffic stream. The formulation of KE is 

described in equation 2.3b. 

2( )KE ak u                                                        (2.3b) 

Where 

:a  kinetic energy correction parameter, a dimensionless constant, here it is taken as 1 

:k  density of the traffic stream 

:u  average speed of the stream 

2.2.3 Heuristic Metrics 

2.2.3.1 Up/Down Speed Difference 

The up/down speed difference is the difference between the maximum vehicle speed at the upstream 

sensor and the minimum vehicle speed at the downstream sensor. Its purpose is to measure the travel 

behavior of a shockwave. For example, when traffic is smooth without shockwaves, the up/down speed 

difference should be small. When a shockwave has reached the downstream sensor, but has not yet 

reached the upstream sensor, there should be a lower speed downstream than upstream thus resulting 

in a high up/down speed difference. A positive up/down speed difference indicates that the maximum 

speed of upstream is higher than the minimum speed of downstream. On the other hand, a negative 

sign of up/down speed difference indicates that the maximum speed of upstream is lower than the 

minimum speed of downstream. The latter case may happen when upstream is congested and 

downstream traffic is already recovering from congestion. 

2.2.3.2 Right/Middle Lane Speed Difference 

As the name suggests, this metric is the difference in speeds between the right lane and the middle lane. 

When the traffic on the right lane is significantly slower than that on the middle lane, lane changes 

become more dangerous as they require drivers to divert their attention from the traffic ahead and 

search for a gap in their mirrors. This increases their reaction time which can be dangerous when 

shockwaves approach. 

2.2.3.3 Max/Min Speed Difference 

This metric measures difference between the maximum speed and minimum speed on a sensor location 

for a given prior time shift and window size. When a shockwave hits a location, in a relatively short 
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number of vehicles, the speeds tend to fluctuate and drop and results in a high Max/Min Speed 

Difference. Such high value is usually observed in the occurrence of traffic oscillations and crashes. 

2.2.4 Individual Vehicle Speed Noise Reduction  

All sensors inherently have error and noise in their measurements, and such noise can cause surges in 

the crash-likelihood calculation and compromise the accuracy of the model. In order to reduce the noise 

in a time series, filtering techniques such as the one proposed by Hourdos (28) in his development of a 

crash probability model are often employed. To perform a time series analysis and noise removal, the 

original unstructured speed data needs to be translated into a 1-second-speed time series using 

interpolation. Two different interpolation methods, linear interpolation and spline interpolation, were 

considered as candidates and tested in a preliminary study by the authors. Linear interpolation consists 

of simply connecting the data points with straight lines while spline interpolation uses a single, 

continuous curve to connect all the points. When comparing these two methods, spline interpolation 

was found to be problematic as the requirement that the data points be connected with a smooth curve 

produced interpolated speeds that were well outside of the normal range thereby introducing additional 

error and noise. Because of this issue with the spline interpolation method, linear interpolation was 

selected for this study. Of the several different filters that Hourdos designed and tested on their ability 

to remove impulse noise, his Digital FIR Hamming filter was selected to perform the noise reduction for 

the system. 

After filtering, the data become another time series with lower noise. Given that the time headways 

between vehicles are as informative as their speeds, the dataset needs to be returned to its original 

form before the traffic metrics are calculated. A reverse interpolation method finding the filtered speeds 

at the times of the original data points is implemented. 

2.3 CRASH PROBABILITY MODEL 

Using the described metrics and their variants as well as the selected digital filter, a crash probability 

model was produced. The model is based on a fitted logistic regression model. The model described by 

Hourdos (28) was employed to determine the likelihood of a crash which is the main input in both the 

CPC detection algorithm and resulting queue warning system.  

2.3.1 System Architecture 

This section presents the system architecture. As shown in Figure 2.3, the system follows a three-layer 

design. The Crash Probability layer collects real-time individual vehicle measurements and processes 

them to remove noise. The filtered data then pass to the crash-probability model to assess the 

likelihood of a crash. This crash likelihood along with additional traffic information such as speeds and 

headways are passed to the second layer, the Algorithm layer. In this layer, the algorithm decides if a 

warning message should be generated by comparing the crash probability with preset thresholds and 

real-time traffic conditions. A decision of whether to raise or drop the alarm is being generated and 
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passed to the third layer: System Control, in which requirements from policy makers are applied to 

modify the result before delivering it to the message sign in the field.  

2.3.2 Control Algorithm 

This section describes the second layer of the system, the control algorithm. The control algorithm is 

developed to determine when to start and stop showing the warning message. The inputs to the 

algorithm are the crash probability and the filtered vehicle speeds. A moving median filter, or average 

filter, is applied to the crash probabilities to reduce noise and outliers. A dynamic average window 

methodology is used to calculate the adjusted crash probability for real-time traffic conditions. Based on 

this adjusted crash probability, user-defined thresholds, and the result of a speed test (see Equation 

2.4), the decision as to whether to raise the alarm is made by the system. Once the alarm is raised, it 

remains active for a minimum of one minute regardless of whether the crash probability drops below 

the threshold. This assures that the sign will remain active throughout the trajectory of the shockwave 

that raised the alarm. Each subsequent alarm renews the one-minute extension. 
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Figure 2.3 System Architecture 
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2.3.3 Control Logic  

The crash likelihood alone is not sufficient for determining the precise time to warn the drivers while still 

producing consistent and stable decisions. Since the crash probability is a continuous variable, a two-

threshold approach is employed to determine whether a crash likelihood indicates crash-prone 

conditions. One threshold for determining the raising of the alarm and a second for determining its 

termination. In addition to the crash probability, the algorithm proposed in this report also takes 

additional traffic measurements into consideration to increase the accuracy and efficiency of the alarm.  

Once the alarm is initiated, it will remain active for a minimum time period, currently one minute. Since 

the individual vehicle data is inherently noisy and can change very quickly, the single model structure 

used to measure the crash probability can generate spikes when it encounters speed outliers. A spike in 

noise caused by outliers takes the form of a sudden surge in the value of crash probability and a sudden 

drop a very short time after the surge. The values before and after such spike were usually in similar 

ranges. Therefore, such a spike may activate the alarm trigger for only several seconds during which the 

alarm shouldn’t be raised. Thus, deciding the status of the alarm based only by the alarm trigger can 

lead to frequent changing of warning messages. The control logic of the algorithm can be found below in 

Equation 2.4. 
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 (2.4) 

Where 

1u : test speed, default is 45 mph. (mph) 

0t : last time in the past with an alarm trigger (s) 

1 : Starting Threshold 

2 : Ending Threshold 

tbv : Current Downstream Speed (mph) 

tp : Adjusted Crash Probability  
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As shown in equations 2.4 and 2.5, the algorithm regards the crash probability as one of the inputs 

needed to decide whether to raise or lower the alarm. The adjusted crash probability is used instead of 

the direct output from the crash probability model. The value n is the size of the dynamic window used 

to average the crash probability. Using a dynamic window size makes the algorithm more sensitive to 

crash-prone conditions and reduces the probability of false alarms caused by noise in the measurement. 

The dynamic window size is calculated through three conditions, as described in Equation 2.5, with 

different results depending on which threshold it is nearest. The controlling hypothesis is that the noise 

in the crash probability will be higher around the selected thresholds so more samples are used to 

calculate the average unless the crash probability suddenly increases to values close to 100% in which 

case the averaging window is made much smaller in order to reduce the delay in raising the alarm. 

 

Figure 2.4 MnDOT changeable message boards with warning displayed. 
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2.3.4 External Controls  

As part of the terms for the deployment of the system, two overrides were included and the preexisting 

MnDOT signs’ (Figure 2.4) refresh rate was kept. The two sets of changeable message boards used are 

fixed to gantries above the freeway. The overrides are intended to limit the possibility of overexposure 

of drivers to the warning by what was, at the time of implementation, an unproven system and consist 

of a time override and a congestion override. The time override prevents the sign from being turned on, 

regardless of the alarm status before noon or after 8 p.m. because MnDOT felt that traffic conditions at 

those times would be too prone to producing false alarms. The congestion override also prevents the 

sign from being turned on when five consecutive 30-second average speed measurements at the loop 

detector upstream of the farthest upstream sign are below the MnDOT-imposed threshold of 25 mph. 

This override is intended to reduce driver overexposure to the warning by not displaying a warning 

when drivers are already travelling slowly. The rate at which the sign is updated is a result of the sign 

being part of the MnDOT Twin Cities metro-wide network. Initial activation can vary from a few seconds 

to one minute, depending on the synchronization between the independent queue-warning system and 

the traffic operations system that controls the signs. This delay amplifies short gaps in the alarm 

activation (e.g. even if the alarm is only lowered for 10 seconds, the sign could be off for up to a 

minute).  

2.3.5 Interface and Control Station 

In order to allow the users of QWARN to monitor the system and traffic conditions in real-time, a live 

feed of the model result, MVD data, sign status, and cameras used for event detection is available 

during the system’s operation. Although the actual application resides in one of the secure servers of 

the MTO, a station has been installed in the lab area that allows monitoring of all relevant feeds (Figure 

2.5). The QWARN application has been developed to be able to operate from any kind of computer even 

in the Cloud. All communications are Ethernet based so any instance of the application that has the right 

credentials can poll the MVDs for data and produce the warning messages. At the moment, the 

application resides behind the combined firewalls of the University of Minnesota and the MTO. 

The system has been developed to include several safety and redundancy features. For example, if for 

any reason, the actual application crashes, a separate watchdog application will attempt to restart it 

and, if that fails or the entire server is down, an alert email is dispatched to the MTO lab manager 

informing him of the situation. The integration with MnDOT’s Regional Traffic Management Center 

(RTMC) IRIS traffic operations system is performed through a secure web connection that makes hacking 

into either system virtually impossible since IRIS is polling the QWARN application every 30 sec for a 

message instead of pushing messages to the traffic operations system. Messages are not dynamically 

selectable so even if a hacker could take control of the system the “Slow Traffic Ahead” message is the 

only one they would be able to display.  Finally, each message IRIS receives has a 45 sec lifetime so if the 

warning has been raised and the system crashes the sign will turn off after 45 seconds to avoid cases 

where the warnings are still up when conditions are non-crash prone or the congestion override has 

been imposed.  
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A picture of the GUI of the QWARN system is presented in Figure 2.6. The upper left screen (shown in 

detail in figure 2-6) shows the status of the data feed from the MVDs, the last 60 estimations of crash 

probability (both raw and adjusted), the thresholds under which the system is operating, a continuously-

updating plot of the model, the algorithm, and the override results, command line windows for the 

watchdog application, a feed from IRIS on the current status of the ILCS, and a feed of speed 

measurements from the loop detectors controlling the congestion override. The other screens show the 

various camera feeds and the video feeds from the MVDs. 

 

 

Figure 2.5 QWARN Monitoring Station at the MTO 



 

19 

 

 

Figure 2.6 Detail of the User Interface of the QWARN System 

 

2.4 SYSTEM CALIBRATION AND VALIDATION 

2.4.1 Calibration Basics  

Calibration is important to optimize the performance of a system with a number of user-defined 

parameters such as the thresholds for the crash probability model and the speed test. Calibration 

requires knowledge of the ground truth and a set of metrics for evaluating system performance. 

In the context of Intelligent Transportation Systems, Automated Incident Detection (AID) systems were 

the first examples of real-time detection and alarm traffic operations tools. Inevitably, those systems’ 

characteristics influenced and shaped the definitions of performance metrics for this type of real-time 

application. The performance criteria focused on the efficiency, accuracy, and robustness of such 

systems. For AIDs the important factors were to generate an alarm as soon as possible after an incident 

event happened and to not generate alarms when no such incident event has taken place. These two 

objectives target accuracy both in terms of generating alarms for as many, if not all, of the events, as 

well as reducing alarms raised where no event has happened. Efficiency metrics targeted AID 

performance in minimizing human operator effort spend on false alarms. The accuracy metrics include 

the false alarm rate (FAR) and detection rate (DR), while the metric targeting efficiency is false decision 

rate (FDR). In the context of AIDs, the FAR is usually the number of alarms raised when no incident was 

present divided by the total number of alarms generated while the system was running. The DR is the 
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number alarms raised when an incident happened divided by the total number of incidents occurred 

while the system was in operation. The FDR is the combination of the missed-detection rate and false 

alarm rate. Detection systems are required to decide whether to raise the alarm at each time interval 

they operate on. FDR is the sum of all intervals that the system raised the alarm for but no incident 

existed and the intervals were an incident was present but the system did not raise the alarm, all divided 

by the total number of intervals the system was in operation. High DR and low FAR and FDR are 

preferred describing an accurate and efficient system. A tradeoff between FAR and DR is a common 

issue in such systems. An overly sensitive system may have a very high DR, but by being sensitive, it can 

raise the alarm while nothing happened, resulting in a high FAR.  

Unfortunately, the aforementioned performance metrics, as defined, are not suitable for the evaluation 

of a CPC detection system like the one described in this report. When discussing these metrics, it is 

important to note that the objective of AIDs is to detect an event that has happened and alert operators 

so they can initiate the process of incident response and clearance. AIDs did not interact with the drivers 

and did not aim in changing driving behavior to avoid the event that were designed to detect. The CPC 

detection system presented in this report is a crash prevention system which implies the following: 

 CPC detection systems aim to detect conditions that may lead to a crash but have not done so 
yet. 

 Warn drivers that are about to encounter CPCs and help them navigate such unsafe conditions. 

 Warning the drivers can also change driver behavior enough to eliminate the CPCs themselves. 

 An AID raising the alarm when no incident happens is a clear failure whereas a CPC detector raising 
the alarm and nothing bad happening could mean failure if the conditions were not crash prone 
but it could mean success if a potential crash was avoided.  

 Incidents are factual events and in extent the detection of their existence is a binary, true or false 
situation. The causal factors precipitating to a crash, as described in Hourdos et. Al. (4), include 
the traffic conditions described as crash prone but, more importantly, involve factors related to 
the individual drivers such as reaction time, awareness, distraction, etc. The same CPCs can result 
in a crash if a distracted driver is involved or no crash or a near-crash if all drivers involved are 
attentive. 

 CPCs are traffic conditions where the probability of a crash is higher than normal, there is no 
objective way to definitively classify a time period as crash prone where no crash or near-crash 
has happened. 

 Using the aforementioned performance metrics as defined to judge the system proposed in this report 

can result on overly conservative results and a calibrated system of much lower performance than the 

one possible to achieve. Therefore, there is a need for a more robust and leveled performance metric. 

Towards that effect, this study proposes a new metric, the Alarm Efficiency Score (AES), that better fits 

the nature of a real-time driver warning system. The AES is calculated based on the historical crash 

likelihood score and the alarm results of the day on which the system performance is to be evaluated. 

Unlike the FAR, the AES is not in a percentage scale. Therefore, in terms of calibration, it only has 

meaning when comparing two or multiple results produced by different systems or the same system 

with different parameters. A higher AES indicates a better performance.  



 

21 

 

2.5 HISTORICAL INCIDENT LIKELIHOOD SCORE 

This study utilized the historical event likelihood approach to measure how dangerous a traffic condition 

can be. Given a certain time on a historical day, the similarity of the traffic condition during that time 

was compared with the traffic conditions when events happened and calculated a likelihood of an event.  

2.5.1 Representation of Traffic Condition  

For representing traffic states, two separate ten-dimensional spaces, one of volume and one of 

occupancy, were defined. Each traffic condition is represented by a set of these ten-dimensional vectors. 

Equation 2.6 is an example of the vector of volume at time t. The value of the 10th dimension equals to 

the volume at time t.  

9 8 7 6 5 4 3 2 1( ) ( , , , , , , , , , )vol t t t t t t t t t tvec t vol vol vol vol vol vol vol vol vol vol              (2.6) 

Where 

( )volvec t : The volume vector at time t; 

tvol : The volume at time t; 

t : Time, in this case t is the number of the 30s segment; 

The volume and occupancy data from loop detectors were aggregated over 30-second intervals forming 

30-second-long time segments. The time variable, t, is equal to the number of the time segment. This 

study uses loop detector data for convenience, but individual vehicle measurements can also be used as 

long as they are aggregated to represent stable traffic flow over time. 

2.5.2 Data Normalization 

The natural distributions of volume and occupancy are different. In order to convert them into the same 

metric, the data are normalized and representation vectors are created. The normalization function is 

described in Equation 2.7. The normalization process involves subtracting the mean from volume data 

and then dividing by the standard deviation. The normalization for occupancy is the same as for volume. 
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Where 

'ivol : Normalized volume for time segment i; 

ivol : Original volume for time segment i; 

n: Total number of time segment;  
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2.5.3 Similarity 

This study uses similarity between a given traffic condition vector and all the condition vectors that 

precipitated crashes and near crashes to assess the “dangerousness” of a traffic condition. The 

assumption is that if a given traffic condition is very similar to the majority of traffic conditions 

corresponding to crashes and near-crashes, the given traffic condition is likely to be dangerous, too.  

There are many similarity measurements such as cosine similarity, Euclidean distance, and extended 

Jaccard similarity. In this study, different types of similarity metrics were tested. Here, cosine similarity is 

chosen to demonstrate the evaluation methodology. Cosine similarity measures the angle of two high-

dimensional vectors to determine their degree of likeness. As shown in Equation 2.8, the nature of 

cosine similarity makes it settle in the range (-1,1) with 1 representing the highest similarity. 

cos(𝐴, �⃗⃗�) =
𝐴∗𝐵

‖𝐴‖‖�⃗⃗�‖
               (2.8) 

Where A, B are two traffic vectors. 

2.5.4 Modeling Crash Likelihood 

To evaluate the validity of a model-produced crash likelihood for a given traffic condition, the main 

objective is to model the similarity of a given traffic condition compared to those known to be 

associated with crashes and near crashes.  

Traffic measurements leading up to each historical event were extracted and used to formulate a set of 

historical traffic crash-prone conditions. Given a current traffic state represented in the two-vector 

approach, the similarity between the historical crash-prone conditions and the current conditions can be 

calculated to measure the comprehensive similarity of the two. Based on the assumption that a higher 

similarity between a given traffic condition to conditions that resulted in a crash corresponds to a higher 

probability of a crash, the likelihood of a crash can be estimated. Extending this concept to each day in 

the set of historical days used to evaluate the crash probability model, a map containing the similarity of 

each time period to the periods corresponding to historical events (crashes and near-crashes) can be 

constructed for each such day.  

This map of similarities describes the dangerousness of traffic conditions for each target day. The values 

in the map, the crash likelihood score, are produced using Equation 2.9 in which L is the crash likelihood 

score, Vd,t, is the volume for traffic condition in day, d ,at time t; Vi,t is the volume of event, i, at time t. 

Similarly, O represents the occupancy. This score will be different when the sample of historical crashes 

and near crashes is changed. Although it is not a percentage probability, it can quantify the 

dangerousness of different traffic conditions in that a higher score denotes more dangerous traffic 

conditions as compared to similar conditions that did not result in a crash or near crash. This approach 

provides the means to more fairly evaluate the queue warning system even with crash-prone conditions 

that may not involve reckless or inattentive drivers. Figure 2.7 shows the values of the crash likelihood 

score during a target day. 
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Figure 2.7 Crash Likelihood Score for a Target Day 

2.5.5 Alarm Efficiency Score 

The alarm efficiency score is a measure of how efficiently a warning system operates over a period of 

time. Equation 2.10 shows the mathematical formulation of the score. There are two components in the 

equation - the first measures the efficiency of all of the active alarms and the second serves as a penalty 

term for not warning about dangerous conditions. For an efficient queue warning system, it is desirable 

to cover as many dangerous traffic conditions as possible in the process of minimizing the total warning 

duration.  

Assuming the evaluation period is a day, the first term in Equation 2.10 becomes the summation of 

crash likelihood score for all traffic conditions with the alarm being up, divided by the time that the 

alarm is up for this day. The first term is a density of historical crash likelihood approach and favors the 

system cover more crash likelihood score with a short alarm duration. Similarly, the second term 

becomes the summation of crash likelihood scores for all traffic conditions during which the alarm was 

down divided by the time that the alarm is down for the day.  
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LON:  Likelihood score during alarm was up. 

LOFF:  Likelihood score during alarm was down. 

tON: Amount of time the alarm is on. 

tOFF: Amount of time the alarm is off. 

Given different pairs of alarm activation and deactivation thresholds for the crash likelihood, different 

alarm efficiency scores can be calculated for the result of each of these threshold pairs as a means to 

compare their performances. Figure 2.8 shows a plot of the alarm efficiency score for different pairs of 

thresholds from {0.2,0.1} ({Start Threshold, Stop Threshold}) to {0.9,0.8} with a step of 0.1 for each 

threshold. 

 

Figure 2.8 Alarm Efficiency Score for Different Sets of Thresholds 

2.6 RESULTS AND DISCUSSION 

The aim of this queue warning system is to efficiently alert drivers of CPCs they are about to encounter. 

The threshold for the crash probability used was among those proposed in in Hourdos et. Al. (4), for the 

speed data filter selected. The system operation was monitored during the three phases of the field 

implementation. Phase 1 lasted from March 1st, 2016 to April 30th, 2016 and involved the operation of 

the system in silent mode, meaning the sign was not activated but alarms where recorded. During this 

phase, the system’s ability to operate correctly and reliably were tested and minor adjustments were 



 

25 

 

made in the system parameters. Phase 2 lasted from May 1st, 2016 to June 1st, 2016 and involved full 

system operation as well as the introduction of a heuristic test to reduce the time it took the alarm shut 

off at the end of the day when traffic returned to free-flow for the day. Phase 3 lasted from June 2nd, 

2016 to August 31st, 2016 and involved the full operation of the system with no further changes or fine-

tuning. The results presented in this report are those gathered during Phase 3. 

In order to obtain the ground truth on which the system was to be evaluated, event observations were 

collected during Phase 3. This involved manual reduction of video from multiple cameras recording 

crashes and near-crashes that took place as well as recording the exact times the sign changed states. 

The data of 55 weekdays with sufficient video footage in this period were used to establish the ground 

truth. Some weekdays were excluded due to corrupted video files or equipment maintenance. Based on 

the ground truth established, detection rates under different system conditions were calculated. The 

false alarm rate, however, is much more difficult to calculate. Unlike the detection rate where the 

system performance is only evaluated at the time of an event, the only way to compute a false positive 

or false negative rate would be to go through the ground truth (the collected video) to determine if 

conditions were, in fact, crash-prone when the system said they were and calculate the false positive 

and false negative rates from that. Not only would it be extremely time-consuming to delineate all of 

the times when conditions appeared crash-prone, the task of labeling traffic conditions would be 

extremely subjective and therefore, unreliable. As such, no quantitative measure of the system’s false 

alarm rate is available at the moment.  

2.6.1 Detection Rates 

To assess the performance of the system, the detection rate of all conflict events between 3rd Ave and 

Chicago Ave during the three-month evaluation period was calculated separately for the control 

algorithm and for the system as a whole. The detection rate was calculated for just the crashes, near 

crashes, and both events combined. To find the actual number of conflict events, all the events 

observed during the evaluation period were tabulated and sorted based on whether the drivers involved 

were warned or not warned about CPCs before the event and if the drivers were not warned, the events 

were separated by the reason the system failed to warn them (the results are tabulated in Table 2-2). 

 

Table 2-2 Breakdown of system performance in right lane by component 

Reason For Failure to 

Warn Driver 
Event Type 

 Crashes Near Crashes All Events 

 [Count] [% of Tot.] [Count] [% of Tot.] [Count] [% of Tot.] 

Driver warned 
 

15 36.6% 70 49.0% 85 47.3% 
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System buffering or 
inoperative 

3 7.3% 8 5.6% 11 6.0% 

Alarm was not raised 
 

9 22.0% 28 19.6% 37 20.1% 

MnDOT congestion 
override in place 

8 19.5% 10 7.0% 18 9.8% 

MnDOT time override 
in place 

4 9.8% 25 17.5% 29 16.8% 

System delay 
 

2 4.9% 2 1.4% 4 2.2% 

Total 41  143  184  

It is apparent that the control algorithm is far more successful at raising the alarm for events than the 

system as a whole is at activating the sign. As seen in Table 2-3, following a successful detection by the 

control algorithm, the main reason the sign was not activated is the presence of a MnDOT override. 

Using the results shown in Table 2-2, the detection rates were calculated. To assist the reader in 

comparing the different detection rates and to measure the effect the overrides had on system 

performance, the results are separated in two categories; one is based on the algorithm decision and 

the other is based on the whole system which includes the algorithm, the overrides, and the sign refresh 

rate. In addition, these results are grouped into two categories based on time period; one for the full 

time that surveillance data were available (9 a.m. to 8 p.m.) and the other for the system operational 

period of noon to 8 p.m. during which the system was fully functioning. The results are tabulated in 

Table 2-3 which shows the rates at which various event types were detected by the algorithm and the 

rates at which the system as a whole provided a warning to the drivers involved in those events for the 

entire day and for just the time the MnDOT time override was not imposed.  

Table 2-3 Detection rates during the evaluation period 

Detecting Component Event Type 

 Crashes Near Crashes Both 

 [%] [%] [%] 

Algorithm (9 a.m. to 8 p.m.) 76.3 79.3 78.6 

Whole System (9 a.m. to 8 p.m.) 39.5 51.9 49.0 

Algorithm (noon to 8 p.m.) 73.5 74.6 74.3 

Whole System (noon to 8 p.m.) 44.1 63.6 59.2 

 



 

27 

 

Table 2-4 Event frequencies per million vehicles traveled (VMT) 

Observation Zone MN 65 to Portland Ave 3rd Ave to Park Ave 

Observation Year 2013 2016 2016 

Crashes 11.9 9.34 19.5 

Near Crashes 111.8 51.8 93.0 

Table 2-4 shows the frequencies at which events occurred in any lane between 9 a.m. and 8 p.m. on 

weekdays in June, July, and August of 2013 and 2016. The 2013 study only recorded crashes that 

occurred between MN 65 and Portland Ave whereas the 2016 study included a larger area. For 

comparison’s sake, the 2016 events that occurred in the same region as the 2013 events are reported as 

well as the totals. Due to such expansion of the observation area for the 2016 study, crashes were 

observed at a greater frequency in 2016. However, when the events occurring outside of the 

observation zone used in 2013 are excluded from the 2016 data, it becomes apparent that there was a 

22% decrease in crashes and a 54% decrease in near crashes in that zone following the implementation 

of the queue warning system. 

Table 2-5 shows the average number of vehicles passing under the MN 65 bridge per day in 2013 and 

2016. The change in the average from 2013 to 2016 is also reported in this table. It is interesting to note 

that the total Average Daily Traffic (ADT) decreased by roughly 5% between 2013 and 2016. The 

morning congestion observed in 2016 was not observed in 2013. During the time between the collection 

of the base data and the time the system was put in place, the timing of the traffic lights at the 

intersection of the on-ramp and 11th Ave was altered in order to reduce ramp spillback and reduce 

queuing in the right lane. That can be a reason for the morning congestion downstream but it doesn’t 

necessarily account for the 5% drop. The effects of these changes in traffic patterns are uncertain. 

Table 2-5 Average daily volumes during historical and current studies 

Time Range 2013 Average 2016 Average Percent Difference 

9 a.m. to 8 p.m. 45260 42828 -5.4% 

Whole day 74070 69758 -5.8% 

2.6.2 System False Alarm Rate 

A prominent concern when implementing the system was minimizing overexposure of drivers to the 

warning sign. This concern is what prompted MnDOT to impose what, in hindsight, turned out to be 

somewhat excessive congestion and time overrides. Of all types of overexposure, the case of a driver 

seeing a warning about slow or stopped traffic but not having to slow or stop is the one that must be 

avoided the most. Because the transition from crash-prone conditions to free-flow conditions usually 

occurs very suddenly (less than two minutes), the crash likelihood model has a tendency to continue 
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outputting crash probabilities indicative of crash-prone conditions for up to 15 minutes after 

uncongested flow conditions have been restored. In order to reduce the false alarm rate coming from 

this delay, an override was built into the control algorithm to deactivate the alarm, regardless of the 

model result at the time, when both MVDs observe 10 consecutive vehicles with speeds greater than 30 

mph.  

2.6.3 System Limitations  

Due to the fact that the system is still in the prototype phase, several aspects of it are less than ideal and 

result in uncertainties of varying degrees. The limitations and uncertainties include the non-ideal 

configurations of the MVDs and warning sign, the limitations of the hardware, the fact that some of the 

equipment was shared with MnDOT, and the fact that the model result is currently computed for only 

the right lane. In the interest of cost and time, the MVDs were installed on a high-rise near the road 

rather than on a gantry or bridge directly over the road. The warning messages were displayed on the 

relatively small MnDOT changeable message board rather than a purpose-made display with potentially 

different characteristics (location, size, color, etc.). The limitations of the hardware also presented a 

source of uncertainty in that the speed data from the MnDOT single loop detector was only a 30-second 

average and was not completely accurate. Issues with power outages and lack of sufficient data storage 

at the rooftop station resulted in missing video data. Because control of the sign and the camera 

monitoring was shared with MnDOT, the sign was occasionally used to display incident management 

messages from MnDOT rather than the queue warning messages. Because the capability of the system 

to function as intended and the effect that it would have on drivers were unknown at the time of 

installation, it was only applied to one of the three lanes. As a result, it is unclear what effect this partial 

deployment had on driver's actions.  

2.7 CONCLUSIONS 

Impressions from the 55 weekdays of evaluation in the summer of 2016 suggest that the queue warning 

system prototype discussed in this report represents a successful crash prevention solution. The effect 

of the system on conflict events is difficult to determine from the data available but the system 

performs well given the constraints under which it is operating. The system raised the alarm for 79% of 

all conflict events that occurred during the evaluation period but was only able to warn drivers for 49% 

of all conflict events predominantly due to the overrides that were put in place to prevent the possibility 

of the system displaying the warning for excessive amounts of time. Why these crashes happened even 

with the drivers exposed to the warning is unknown. One can speculate that the message is not clear or 

strong enough. A lot of the vehicles involved are only exposed to the warning once on the Park Ave 

gantry since the warning sign further upstream is not visible from the entrance from 35W SB. The 

project was supposed to test different messages but due to time delays at both ends this did not 

happen. Regardless, if more messages were tested in the same period it would have been difficult to 

gauge the driver response since events are still infrequent and random. 
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Now that proof of concept has been confirmed, the next step will be to expand and optimize the 

infrastructure used by the system.  Several changes to the system on the policy and infrastructure levels 

have been identified that will likely result in greater detection and warning rates and thereby decreased 

conflict event rates. Given greater design control, many of the system limitations could be mitigated if 

not eliminated altogether. This will include installing MVDs or other sensors on gantries or bridges 

directly above the freeway in so they are afforded a stable head-on view of traffic and placing the 

warning sign in a location selected by choice rather than necessity. The warning sign shape, size, 

location, and message may also need to be optimized to increase driver attention. The most important 

improvement will be expanding the system to all three lanes of traffic and following that change with a 

long-term study of the effects of the system on conflict event frequencies. 
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  DEVELOPMENT AND FIELD DEPLOYMENT OF A 

QUEUE WARNING SYSTEM ON I-35W SB BASED ON FREEWAY 

QUEUE LENGTH ESTIMATION 

3.1 PROJECT MOTIVATION 

Past research studies have shown that freeway rear-end collisions tend to occur in extended stop-and-

go traffic or at end-of-queue locations (29). By identifying these kinds of traffic conditions and providing 

warning messages to drivers before they encounter those conditions, drivers are more alert of and 

prepared for crash prone conditions (CPCs) thereby reducing the likelihood of traffic accidents. This, in 

turn, improves mobility because severe traffic congestion caused by traffic accidents can be avoided or 

alleviated. This project holds the potential to improve both traffic safety and mobility. 

3.2 PROJECT OBJECTIVES 

The project objectives are:  

1. Capitalize on past research and existing and new traffic detection capabilities on I-94 and new 

instrumentation on I-35W to develop a CPC detection system capable of generating alarms 

when the danger for rear-end collisions is high.  

2. The project will evaluate potential driver warning messages that can be displayed by the 

existing intelligent lane crash signal (ILCS) and select the ones that are most effective in raising 

drivers’ attention levels. 

3. Finally, the project will develop a working prototype for the Rear-End Collision Prevention 

Driver Warning system and assist Minnesota Department of Transportation (MnDOT) in field 

implementation and testing. 

3.3 LITERATURE REVIEW 

3.3.1 Literature Review on Freeway Queue Length Estimation  

Real-time prediction of the length of queues on freeways is of great help for the development of 

advanced freeway traffic management systems. Since the 1960s (42, 66, 76, 45), the importance of 

managing vehicle queue length to reduce vehicle delay and prevent spillover, especially at signalized 

intersections, has been recognized and studied (39, 40, 31, 62, 63, 35, 65).  

3.3.1.1 Basic Methodology on Queue Length Estimation 

Essentially, two basic approaches have been developed to estimate queue length, namely the 

cumulative traffic input-output methods and the shockwave methods. 
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The first type of queue length estimation model is based on the analysis of cumulative traffic counts at 

both the input and output to a link (30, 33, 43, 66, 68, 69, 70, 73, 74, and 75). Such models are 

commonly used to describe the traffic queuing process. However, according to Michalopoulos et al. (64), 

they are not sufficient for “obtaining the spatial distribution of queue lengths in time”. Another obvious 

limitation of such models is that they are only able to estimate the queuing state when the queue length 

does not pass beyond the input detectors. These drawbacks limit the application of such type of models. 

The second type of model analyzes vehicle queues based on the feature of traffic shockwaves. The 

shockwave analysis takes the traffic flow as a continuous flow on road and studies its characteristics. A 

shockwave, also known as the kinematic wave, is the interface between any two traffic states with 

different characteristics (flow rate, speed and/or density). The shockwave theory provides a powerful 

tool for analyzing the evolution of traffic condition in a time-space diagram, especially during the 

formation and dissipation of queues at highway bottlenecks. One of the main components of shockwave 

analysis is the traffic flow model selected. Lighthill and Whitham (56) and Richards (67) independently 

developed the first dynamic traffic flow model. Their namesake Lighthill Whitman Richards (LWR) model 

describes traffic on a link using a conservation law and an equilibrium relation between density and flow 

better known as the fundamental diagram (FD). Kinematic wave models have been widely used to study 

traffic dynamics on road links both analytically and numerically. Later, the original LWR model was 

extended in different directions to incorporate more realistic details. A more complete review of the 

traffic flow model and shockwave analysis was conducted by Maerivoet and De Moor (61). 

3.3.1.2 Recent Work on Vehicle Queue Length Estimation 

In particular, this section will review a number of recent works on vehicle queue analysis for 

intersections and freeway bottlenecks. 

On the intersection vehicle queue estimation side, Hiribarren and Herrera (49) proposed a real-time 

traffic state estimation model utilizing vehicle trajectory data. Similarly, Cheng et al. (37) proposed a 

method of queue length estimation for signal control using sample vehicle’s trajectories. Instead of 

using a traffic flow model, Comert and Cetin (38) developed a queue estimation method based on 

conditional probability and Bayes’ rule.  

Regarding vehicle queues on freeways, a great deal of work has been done on the queue analysis at 

freeway work zones. Jiang (52) applied shockwave analysis to estimate traffic delay and vehicle queue 

length at freeway work zones. Karim and Adeli (53) computed the queuing delay and vehicle queue 

length using a deterministic traffic flow model after calculating the freeway work zone’s capacity. Later, 

Ghosh-Dastidar and Adeli (44) presented a microsimulation model based on a neural network for the 

queue length estimation at freeway work zones. A more comprehensive review on vehicle queue length 

estimation at freeway work zones was conducted by Weng and Meng (77). Beyond the vehicle queue 

analysis at work zones, Wu et al. (79) estimated queue length on freeway on-ramps. Similarly, the 

Kalman filter method was applied in Sheu et al. (71) to estimate real-time delays and queues in the 

presence of freeway incidents.  
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3.3.1.3 Vehicle Queue Length Estimation Methods Using High-Resolution Data 

Regarding the data used to estimate vehicle queue, most of the researches use aggregated data. For 

instance, Skabardonis and Geroliminis (72) proposed a method to estimate intersection queue length 

using aggregated loop detector data in 30-second intervals. Some use probe vehicles’ trajectory data, as 

presented above however, few of them fully utilized the high-resolution data. This is partially because 

the high-resolution traffic data was not available until recently. 

Using the high-resolution event-based field data obtained from the SMART-Signal system, Liu et al. (58) 

developed a real-time queue length estimation method for congested signalized intersections. One of 

the appeals of this method is that it is capable of estimating the length of queues that exceed the 

location of upstream queue detectors. In particular, the high-resolution data was used to identify the 

“break points” (time and location of traffic flow pattern changes) which contributed significantly to the 

estimation of long queues. When the simple shockwave theory was applied to study the dynamics of 

traffic flow, field tests showed an accurate outcome from this method in terms of queue length 

estimation at intersections. As an application of this method, Liu and Ma (57) proposed a virtual vehicle 

probe model to estimate the time-dependent travel time. Though the objective was to estimate the 

travel time, queue length at the intersection was estimated in advance in order to accurately calculate 

the vehicle probe’s travel speed. The field test on a corridor along France Avenue in Minneapolis, MN 

with 11 intersections demonstrated that the proposed model can generate accurate time-dependent 

travel times under various traffic conditions. 

Based on these previous studies, a shockwave profile model (SPM) for traffic flow was proposed in Wu 

and Liu (80) which filled the research gap of implementing traffic flow model in signalized urban arterial. 

The SPM model is particularly suitable for simulating traffic flow on congested signalized arterials 

especially with queue spillover problems where the steady-state periodic pattern of queue build-up and 

dissipation process may break down. Field tests of the SPM model show that it can successfully identify 

the queue length, queue spillover occurrences and the dynamics of the vehicle queue for an arterial on 

TH-55 in Minnesota with three intersections. 

However, it is not straightforward to extend the queue estimation algorithm from arterial to freeway. 
First, most queues on arterials are caused by traffic signals. They have fixed cyclical pattern that starts 
from a stop line at the beginning of a red period. Therefore, if the signal status is available, the onset of 
the queue can be immediately detected by a stop bar detector. A similar pattern exists for queues on 
freeway on-ramps (79), but it cannot be anticipated on freeway mainlines. The start of a stopped queue 
on freeways is not predictable; it can be anywhere at any time (41). Second, the speed of discharge 
shockwave is almost constant for a specific approach of an intersection, because the traffic state 
downstream of the queue at the beginning of discharge is always empty (58). On the other hand, 
freeway queues may begin to discharge under various downstream traffic conditions. Last, the impact of 
lane changes can be omitted for queues on arterials because vehicles are not permitted to change lanes 
when getting close to intersections. However, for most freeway segments, vehicles can change lane as 
long as they do not impede others.  
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3.3.1.4 Concluding Remarks 

From the review above, it was found that most of the previous research focused on vehicle queue length 

estimation at signalized intersections and specific locations (e.g., work zones and ramps) on freeways. 

Fewer studies have been dedicated to the more general analysis of freeway vehicle queues. The lack of 

research on the theoretical analysis of freeway queue formation, evolution, and dissipation using high-

resolution data is even more obvious. The difficulty of capturing the dynamics of freeway traffic 

maneuvers is one obstacle facing such analysis. Another difficulty is the lack of field data, especially 

high-resolution data. Realizing the research gap and the opportunity, developing methods to identify the 

freeway vehicle queue’s formation, evolution and dissipation processes using high-resolution data 

collected from this project will contribute significantly both in theory and in practice.  

3.3.2 Literature Review on Intelligent Lane Crash Signal  

In the case that a queue on freeway is identified/predicted, informing drivers about the downstream 

queue and preparing them for the changes of traffic status will be helpful for freeway traffic 

management. In this project, ILCS are utilized to display warning messages and guide drivers to adjust 

speed to avoid potential rear-end collision and improve the freeway performance. In the following, the 

effectiveness of freeway ILCS systems and the response from drivers to such systems, both from 

simulation results and field tests, are reviewed. 

3.3.2.1 Simulation and Survey Studies 

Chatterjee et al. (36) conducted a survey on drivers’ response to variable message signs (VMS) in which 

it was found from the questionnaires that only 1/3 of drivers saw the information and 1/5 of them 

would change their route choices. Many research works reported that drivers’ behavior could be more 

influenced by speed advisory and lane changing signs (compared to the route-changing messages). For 

instance, Hassan et al. (48) investigated drivers’ responses to different VMS messages with driving 

simulation software and concluded that the message of “Caution-fog ahead-reduce speed” was the one 

with the best effect. 

Khan (54) developed an infrastructure-based queue-end warning system which automatically estimates 

the queue length and displays messages on portable VMS in order to reduce rear-end collisions. 

However, the exact messages on boards were not specified. This system was tested through driving 

simulators. It should be noted that because the warning system was deployed at freeway work zones, 

the location of the front of the queue was known. Whether the developed approach can handle other 

forms of queues on freeway is not clear. Lee and Abdel-Aty (55) conducted a study including 86 

participants who drove a 5-mile section of freeway on a driving simulator. The participants were 

exposed to warning messages as well as speed limit messages. Simulation results showed that when 

warning messages or speed limits were displayed, participants generally drove at a uniform speed. Their 

research findings also indicated that warning messages were beneficial in reducing speed variation and 

removing congestion and could potentially reduce crash risk on freeways.  
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3.3.2.2 Examples of Real ILCS System Implementation 

In addition to simulation and survey studies, field tests of variable message systems were also 

conducted. A large-scale real-time driver warning system called the Caltrans Automated Warning 

System (CAWS) was installed on Interstate 5 and State Route 120 near Stockton, California and was 

brought on line in 1996 (59, 60, 34, 46). CAWS displays various messages and signs to inform drivers 

about the approaching traffic conditions and the advised speed. Messages are designed for conditions 

with different visibilities and purposes. By comparing the data from both the study direction (the 

direction of freeway without warning system, I-5 North) and the control direction (the direction of 

freeway with a warning system, I-5 South), it showed that the number of crashes was reduced after the 

installation of the warning systems. Wrapson et al. (78) studied the effectiveness of different types of 

signs. By measuring the vehicle speed in a 50 kph zone, the study suggested that simply displaying the 

average speed of neighboring vehicles without giving a specific speed advisory or warning the drivers 

that their speeds were being measured could significantly reduce the vehicle speed. Bertini et al. (32) 

tested their automatic speed limit advisory system at bottlenecks along a section of German freeway, 

which decreased the speed limit before bottleneck activation as a means of managing traffic density. 

Another notable effort in the development and deployment of crash prone traffic condition detection 

and alert systems is currently active in Japan. Under the Advanced cruise-assist Highway System (AHS) 

program, two systems relevant to this research are currently in the field deployment and evaluation 

stage. The first one is an automated roll-over alert system. The system is comprised of several sensors 

providing information on individual vehicle speed, height, and weight. It estimates the probability that a 

vehicle might roll-over in the approaching sharp curve. If this probability is greater than a pre-defined 

threshold, message signs and radio signals will alert the specific driver of the danger and require the 

driver to slow down. This system is based on simple physical models which determine the roll-over 

probability and is mainly aimed to prevent large truck crashes. The second system developed under the 

AHS program is more relevant to the scope of this research. This automated driver alert system aims at 

rear-end crash prevention at roadway sections with special geometric designs and limited visibility (e.g., 

sharp curve). In general, the logic of the system is straightforward: if there is a queue in the predefined 

position or any other lane obstruction, the warning mechanism is activated and then sends alert 

messages to drivers.  

3.3.2.3 ILCS Applications in Minnesota 

As an example of the implementation of ILCS in the State of Minnesota, one project (4) involved hanging 

displays permanently over the traffic lanes on key segments of I-94 and I-35W. Staff members at 

MnDOT’s Regional Transportation Management Center (RTMC) monitor the flow of traffic through 

closed-circuit video cameras and sensors embedded in the pavement. When an incident occurs, RTMC 

staff program the ILCS units to display a series of messages directing drivers away from blocked lanes. A 

rich crash database was created and analyzed to investigate crash related traffic events and contributing 

factors such as weather, individual vehicle speed and headways, etc.  
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Another project (51) utilized a 3D virtual reality system to help design a warning system. Traffic data was 

collected from a high crash zone on I-94. This project visualized and analyzed the crash data using micro-

simulation methods and highlighted gaps in technology and/or knowledge that hampered existing and 

future research projects with similar objectives. One of the gaps identified was the fact that the two 

most widely used data sources, video data and GPS data, are not accurate enough for online micro-

simulation purposes. The high-resolution event-based data collected from this project could help fill that 

gap. 

Another key to implementing ILCS systems is to make sure that each message carries a clear meaning to 

all drivers. Researchers have been investigating the effectiveness of ILCS messages. For instance, 

experiments found that the diagonal arrow merge sign is the most visible ILCS display message (visible 

from 266 feet on average) compared to words and dynamic chevrons (47). It has also been pointed out 

that the ILCS signals have different impacts on drivers at different ages. The younger a driver is, the 

quicker a driver is to respond. The specific effectiveness of ILCS signals tested in the field in the State of 

Minnesota was studied by Harder and Bloomfield (47). 

3.3.2.4 Concluding Remarks 

Both the simulation and field studies showed positive impacts of ILCS system on the safety of freeway. 

Additionally, ILCS systems also improve the mobility of the freeway traffic flow by helping drivers 

stabilize their speed and eliminating stop-and-go movements. Another lesson learned from the 

literature is that different signs carrying different information will have different levels of effectiveness 

on different groups of drivers. Sending out information with the best results requires well designed signs 

and messages. Lastly, the existing ILCS systems obtain information on traffic conditions from traditional 

means of data collection.  

3.4 DATA COLLECTION DEVICE INSTALLATION AND DATA DESCRIPTION 

3.4.1 Implementation Location 

Five sets of the SMART Signal Data Collection Units (DCUs) were installed on I-35W, from 44th street to 

58th street. Figure 3.1 shows the implementation locations. Each DCU collects traffic data in both 

directions. For example, DCU 5 collects traffic data at Station 56 (Northbound direction) and Station 10 

(Southbound direction). Each of the DCUs gets an assigned IP address from the MNIT in order to send 

data packets back to the SMART Signal data server at the RTMC in real-time.  

Table 3-1 lists the locations of MnDOT controller cabinets along the freeway, network settings of the 

data collection units, including IP addresses, gateway, and subnet mask.  
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Figure 3.1 Implementation locations 
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Table 3-1 Implementation locations and network settings 

 STATION NUMBER CABINET LOCATION SMART SIGNAL DCU IP ADDRESS 

1 Station 52, 15 I-35W @ 58th St. 10.69.129.30 

2 Station 53, 14 I-35W @ Diamond Lake Rd. 10.69.128.232 

3 Station 54, 12 I-35W @ Minnehaha Pkwy. 10.69.128.222 

4 Station 55, 11 I-35W @ 48th St. 10.69.128.192 

5 Station 56, 10 I-35W @ 44th St. 10.69.128.162 

 

Gateway:   10.69.128.1 

Subnet Mask:  255.255.254.0 

3.4.2 Detector Pin Assignment 

The detectors on freeway are connected to a 170-type controller at each of the stations. The SMART-

Signal DCU collects the detector actuation information through the C-1 connector of the controller via a 

Y-cable as seen in Figure 3.2. The device itself is plug-and-play and each station takes about 5 to 10 

minutes to install.  

The detector pin assignment table can be found in Table 3-2, where each of the detectors at a station is 

associated with a C-1 connector pin and then with a specific SMART Signal detector number. Users can 

refer to the table when looking at the data collected by the SMART Signal DCUs. 
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(a)                                                                                             (b) 

Figure 3.2 Controller cabinet with data collection units 
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Table 3-2 Detector pin assignment table 

Station 

Number 

Northbound 

Detector 

Number 

C-1 

Connector 

Pin 

SMART 

Signal 

Detector 

Number 

Station 

Number 

Southbound 

Detector 

Number 

C-1 

Connector 

Pin 

SMART 

Signal 

Detector 

Number 

52 300 39 1 15 222 43 5 

 301 40 2  223 44 6 

 302 41 3  224 45 7 

 5933 42 4     

 5934 47 9     

 5935 48 10     

53 303 39 1 14 219 43 5 

 304 40 2  220 44 6 

 305 41 3  221 45 7 

 5941 42 4  5939 46 8 

 5942 47 9  5940 48 10 

54 5943 39 1 12 5953 49 11 

 5944 40 2  5954 50 12 

 5945 41 3  5955 51 13 

 5946 42 4  5956 52 14 

 5947 43 5  5957 53 N/A 

 5948 44 6  5958 54 N/A 

 5949 45 7  5959 55 15 

 5950 46 8  5960 56 16 

 5951 47 9  5961 57 17 

 5952 48 10  5962 58 18 

55 5963 39 1 11 5972 43 5 

 5964 40 2  5973 44 6 

 5965 41 3  5974 45 7 

 5966 42 4  5975 46 8 

 5967 47 9  5976 48 10 

56 312 39 1 10 207 43 5 

 313 40 2  208 44 6 

 314 41 3  209 45 7 

 5968 42 4  5970 46 8 

 5969 47 9  5971 48 10 
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3.4.3 Data Description 

The SMART-Signal system collects and archives vehicle-detector actuation events. Each event contains 

the timestamp and occupancy time of one vehicle, as well as the ID of the corresponding detector. A 

sample of collected data is shown in Figure 3.3. For example, at 18:38:47.627 on August 5, 2015, a 

vehicle reached detector 9, and the time that this vehicle occupied the detector for was 0.220 seconds. 

The difference between the arriving times of consecutive vehicles gives the headway for these two 

vehicles and taking the occupancy time out of the headway gives the gap between these two vehicles. 

Note that each piece of event-based data is archived in the database only after the vehicle leaves the 

detector.  

 

Figure 3.3 A sample of event-based data 

With these high-resolution data available, macroscopic traffic flow parameters including flow rate, 𝑞, 

speed, 𝑣, and density, 𝜌, can be measured using the following equations: 

𝑞 =
1

ℎ𝑒𝑎𝑑𝑤𝑎𝑦
 

𝑣 =
𝐿𝑒

𝑜𝑐𝑐𝑢𝑝𝑎𝑛𝑐𝑦 𝑡𝑖𝑚𝑒 
 

𝜌 =
𝑞

𝑣
=

𝑜𝑐𝑐𝑢𝑝𝑎𝑛𝑐𝑦 𝑡𝑖𝑚𝑒

𝐿𝑒 ∗ ℎ𝑒𝑎𝑑𝑤𝑎𝑦 
 

(3.1a) 

 

(3.1b) 

 

(3.1c) 

While occupancy is normally referred to as the percentage that a loop detector is occupied by vehicles 

during a fixed time period (e.g. 30 seconds or 5 minutes), for the purposes of this project occupancy 

refers to the time duration that a loop detector is occupied by an individual vehicle because of the use 

of high-resolution data.  
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3.5 ALGORITHM DEVELOPMENT (I-35W TEST SITE) 

3.5.1 Online Queue Length Estimation Algorithm 

Before going into detail, it is necessary to define the applicable scope of the online queue length 

estimation algorithm developed for this project. The onset of a stopped queue on freeway can occur 

anywhere and at any time. Due to the limited number and fixed locations of loop detectors, the 

occurrence time and position of the very first queued vehicle can rarely be identified. Based on the real-

time data collected from detectors, the algorithm can “see” the queue only when it travels to the 

position of a detector. Although traffic states from detectors upstream and downstream of the queue 

give some information on the queue, it is risky to predict the occurrence of a queue before it reaches a 

detector because such prediction easily generates false alerts. Therefore, instead of capturing the exact 

occurrence time and location of every stopped queue, the algorithm works to monitor the queue once it 

is seen by detectors. For those queues starting from in-between positions and propagate to detectors, 

lags in response arise but the algorithm provides a more robust solution than capturing the exact 

occurrence time and location of every stopped queue. For those not propagating to detectors, the 

algorithm omits them because of their limited influence in space and time.  

The algorithm runs locally in any freeway segment between two detectors, estimating the length and 

duration of a queue once it the queue is detected by the downstream detector. When the queue grows 

past the upstream detector, the algorithm stops estimating it; further estimation of the queue would be 

provided by the same algorithm running in the next upstream segment. Moreover, considering the 

difference of traffic states across lanes (e.g., lanes to different directions of a divergent junction), one 

algorithm runs for each lane. The algorithm also has limited capability predict the time when a queue 

will be formed or cleared at any given position in a segment nor can it calculate the length of the queue 

in the segment.  

3.5.1.1 Identification of the Occurrence and Termination of Queues  

The first step of the algorithm is to identify the occurrence and termination of a queue at detector 

locations. Generally, the occurrence of queues can be identified by checking the values of occupancy 

time. For example, if a vehicle has occupied the detector for ten seconds, it is safe to claim that this 

vehicle is stopped in a queue. However, relying solely on occupancy time may miss detection of some 

queues. The reason for this is that drivers may maintain following distances than detector length when 

stopping thereby occasionally leaving the detection area blank. In this case, vehicles are queued but no 

large occupancy time can be seen from the data. One example is shown in Figure 3.4. Occupancy time 

and headway for each vehicle are plotted. Most of the long occupancy times and long headways appear 

in pairs as denoted by the black circles, except for one event that is highlighted by the green circle. Note 

that this long headway together with very short occupancy time cannot be caused by a lack of traffic 

demand since it is during peak hours. Rather, this single long headway is caused by a vehicle stopped in 

the queue right behind the detector.  
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Figure 3.4  Paired and unpaired long occupancy and headway data 

Another problem is that, when implementing the algorithm in the real world, the value of occupancy 

time is archived in the database only after the vehicle leaves the detector but, in order to estimate the 

queue in a timely manner, the algorithm cannot wait until the vehicle occupying the detector for an 

abnormally long period of time leaves the detector to begin computing. In fact, seeing a long occupancy 

time archived to the database usually indicates the end of the queuing state. Therefore, a combined 

criterion to identify the onset of queue is used as seen in Equation 3.2 

𝑚𝑎𝑥(𝑺(𝑡)) ≤ 𝑣ℎ  𝑎𝑛𝑑 ( 𝐺(𝑡) ≥ 𝐺ℎ𝑜𝑟 𝑂𝑐𝑐 > 𝑂𝑐𝑐ℎ  ) (3.2) 

Where: 

 𝐒(𝑡):  the set that contains the speeds of the past three vehicles,  

G(t): ithe time gap since last vehicle leaves the detector,  

𝑂𝑐𝑐: the occupancy time of the last vehicle, and 𝑣ℎ , 𝐺ℎ and 𝑂𝑐𝑐ℎ are pre-defined corresponding 

threshold values for them. 

From Equation 3.2 it can be assumed that if the traffic becomes slow (because of a stopped queue 

ahead) and no new record has been seen for a long time or the most recent record has a long occupancy 

time, some vehicle must have stopped either at or right behind the detector location.  

Identification of the termination of the queuing state is not straightforward either. When a stopped 

vehicle begins to move forward, it is possible that it only moves a few feet before stopping again, and so 
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do the following vehicles. This happens often in freeway stop-and-go scenarios when the initial queue is 

compressing. In this case, the move of the originally stopped vehicle does not mean the termination of 

the queuing state. The termination of queuing state is, instead, confirmed by satisfying the following 

equation 

 min (𝐒(𝑡)) ≥ 𝑣𝑙  (3.3) 

Where: 

 𝐒(𝑡):  the set that contains the speeds of the past three vehicles,  

 𝑣𝑙: another threshold value of speed. 

3.5.1.2 Estimation of Queuing/Discharge Shockwave Speed 

After identifying the onset and termination of queuing state, the algorithm will begin to estimate the 

queue by calculating the positions of its head and tail. The theoretical basis of the algorithm is 

shockwave theory. Shockwave takes place where two traffic states (e.g., free flow traffic state and jam 

traffic state) meet. The speed of the shockwave w can be calculated by the following equation. 

 𝑤 =
𝑞1 − 𝑞2

𝜌1 − 𝜌2
 (3.4) 

Where: 

𝑞1,𝜌1:flow rate and density for upstream traffic 

𝑞2 , 𝜌2: flow rate and density for downstream traffic, respectively.  

Typically, there are two kinds of shockwaves in the queuing process on freeway: the queuing shockwave 

that is described by the position of the last queued vehicle, i.e. queue tail, and the discharge shockwave 

that is described by the position of the first vehicle waiting to be discharged, i.e. queue head. The traffic 

states near the two shockwaves are shown in the time-space diagram in Figure 3.5. From left to right, 

the three traffic states are arrival state, queuing state, and departure state, respectively. The boundary 

line between the first two states is the queuing shockwave, and the boundary line between the last two 

states is the discharge shockwave.  
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Figure 3.5 Estimation of density and flow rate 

As shown in Equation 3.4, the states of arrival traffic, jam traffic, and departure traffic determine the 

speeds of the queuing and discharge shockwaves. The flow rate of jam traffic is zero, and a constant jam 

density can be assumed and calibrated using historical data. Therefore, the key problem is to estimate 

the arrival traffic state and departure traffic state. Once a jam is detected at the downstream detector, 

the data collected from the upstream detector for several preceding vehicle actuations are put into 

Equation 3.1 to estimate the density and flow rate of the arrival traffic and calculate queuing shockwave 

speed (see Figure 3.5). The following several vehicle’s detector-actuation data from the upstream 

detector will be utilized to update the arrival traffic state and the speed of the queuing shockwave as 

long as the traffic state at the upstream detector does not stabilize. In the algorithm, updates to the 

queuing shockwave speed will be ended if the variance of speed and flow rate of consecutive vehicles 

from the upstream detector are very small. The speed of the discharge shockwave is estimated in a 

similar way. Vehicle actuations at the downstream detector after the termination of the queuing state 

will be used to initialize and update the speed of the discharge shockwave. Again, the update will be 

ended when the traffic state at the downstream detector stabilizes.  

3.5.1.3 Estimation of Queue Position 

With the speeds of the two shockwaves, the positions of the queue tail and queue head can be easily 

derived. Denoted respectively by 𝑑𝑙(𝑡) and 𝑑ℎ(𝑡) the distances from the positions of queue tail and 

queue head to the position of downstream detector at time 𝑡. It is worth noting that the initial value of 

either 𝑑𝑙(𝑡) or 𝑑ℎ(𝑡) is not zero because of the time lag in identification of the onset or termination of 

queuing state as discussed in Section 3.5.1.1. Their initial values are derived by multiplying the initial 
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shockwave speed by a time delay. Afterwards, the positions of the queue tail and queue head will be 

calculated step by step. Let 𝜏 denote time interval of each time step, 𝑑𝑙(𝑡) and 𝑑ℎ(𝑡) can be calculated 

by the following equations: 

𝑑𝑙(𝑡 + 𝜏) = 𝑑𝑙(𝑡) + 𝑤𝑞(𝑡) × 𝜏 

𝑑ℎ(𝑡 + 𝜏) = 𝑑ℎ(𝑡) + 𝑤𝑑(𝑡) × 𝜏 
 (3.5) 

where 𝑤𝑞(𝑡) and 𝑤𝑑(𝑡) are the speeds of queuing and discharge shockwaves at time t, respectively.  

Following that, the length of the queue at any time, 𝑞𝑙(𝑡), and the duration of the queue at any space, 

𝑞𝑡(𝑥), can be easily derived as follows: 

𝑞𝑙(𝑡) = 𝑑𝑙(𝑡) − 𝑑ℎ(𝑡) 

𝑞𝑡(𝑥) = 𝑡2 − 𝑡1, 𝑤ℎ𝑒𝑟𝑒 𝑑𝑙(𝑡1) = 𝑑ℎ(𝑡2) = 𝑥 
(3.6) 

As mentioned before, the algorithm will not update shockwave positions beyond the position of the 

upstream detector. Moreover, if the discharge shockwave catches up to the queuing shockwave, 

meaning that the queue in the segment has been cleared, the current queuing and discharge 

shockwaves will be cleared and the update will be stopped, too. 

A flowchart of the queue estimation algorithm is shown in Figure 3.6. This algorithm updates all of the 

information (downstream traffic state, queue head, queue tail, shockwave speed, etc.) at every time 

step in real time.  
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Figure 3.6 Flowchart of the queue estimation algorithm 

3.5.1.4 Impact of Lane Change on Shockwave Speed 

One assumption of the shockwave model is that vehicles do not change lanes when traversing the 

subject segment. This assumption generally holds true for queues on urban arterials near intersections 

because vehicles are not permitted to change lanes. However, for most freeway segments, vehicles can 

change lanes as long as they do not impede others. Vehicles passing the upstream detector may change 

lanes before joining the queue in the subject lane, and vehicles departing from the queue in the subject 
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lane may change lanes before showing up at the downstream detector. In this case, using data only from 

upstream and downstream detectors in the subject lane to estimate queue may cause non-negligible 

errors. To address this problem, a well-recognized lane change model, i.e., the gap acceptance model, is 

adopted to modify the original algorithm. Generally, lane changes are executed when drivers are 

motivated to do so and safe gaps in both lanes exist. To this end, the traffic states of adjacent lanes are 

considered as well. For example, if the subject lane is very congested while the adjacent lanes have less 

traffic and safe gaps, drivers from the subject lanes will be motivated to change lanes to avoid 

congestion. In the modified algorithm, the differences in the density and speed across lanes are checked 

and the number of available gaps that exceed a thresholdsize are counted. Using the information on 

density and speed differences and the number of available gaps, the percentage of vehicles changing 

lanes can be estimated and used to modify the queuing shockwave speed using the following equation 

𝑤𝑞
′(𝑡) = 𝑤𝑞(𝑡) × (1 −

𝑛

𝑁
) 

𝑤𝑑
′(𝑡) = 𝑤𝑑(𝑡) × (1 +

𝑛

𝑁
) 

(3.7) 

where 𝑛 is the number of gaps exceed the threshold, and 𝑁 is the number of sampled vehicles. 

3.5.1.5 Traffic State Merging for Queuing and Slow-moving States 

Unlike the queuing process on urban arterials near intersections, it is sometimes difficult to distinguish 

one jam from another on freeway segments. As mentioned before, traffic state changes on freeways do 

not have fixed periods or modes. The traffic state can change from stopped queuing to slow-moving and 

then quickly go back to the stopped queuing state again. Therefore, it is necessary to merge two or 

more consecutive traffic jams into one. This modification is also important in practice because many 

active traffic management (ATM) strategies (e.g., warning of stopped traffic) seek to avoid changing 

traffic information too frequently.  

One example is shown in Figure 3.7(a) shows the case without merge. The times of the start and end of 

the first jam are identified as times 𝑡1 and 𝑡2, respectively. The times of the start and end of the second 

jam are identified as times 𝑡3 and 𝑡4, respectively. Note that when the second jam is detected at the 

downstream detector, the previous jam has not reached the upstream detector. This jam-slow-jam 

traffic is likely to become a large jam upstream. In this case, the downstream traffic state between 𝑡2 

and 𝑡3 is checked. If the average speed is below a certain threshold 𝑣𝑚, then it will be re-categorized as 

jam traffic. This jam-slow-jam traffic is combined into a large jam, as shown in Figure 3.7(b).  
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Figure 3.7 Merge of jam traffic: (a) without merge; (b) with merge 

3.5.1.6 Prediction Ability 

The ability to predict future traffic states is essential to any queue estimation algorithm. It can help ATM 

methods to react in a timely manner. The prediction ability of a queue estimation algorithm is measured 

by how early a reliable prediction can be made relative to the time that the real traffic state changes at 

the position of interest. In the proposed queue estimation algorithm, although shockwave speed can be 

continuously updated after it takes place, it has been found that the speed will converge to a certain 

value after five to ten updates. Then a constant shockwave speed can be set and the position of the 

head or tail of queue in the near future predicted. The prediction ability of the algorithm depends on the 

distance from the location of interest to the downstream detector, the shockwave speed, and the time 

needed before the traffic stabilizes.  

𝑇𝑝 = 𝑚𝑎𝑥 {
𝑥 − 𝑑ℎ(𝑡𝑠)

𝑤
, 0}  (3.8) 

where 𝑇𝑝 is the prediction ability, x is the distance from location of interest to downstream detector, 𝑡𝑠 

is the interval from begin of discharge to the time when the traffic stabilizes, and 𝑤 is the stabilized 

shockwave speed. 

Note that the prediction ability of the proposed algorithm is limited; predictions cannot be made for 

locations near the downstream detector. 

3.5.2 Field Test of Queue Estimation Algorithm  

The proposed algorithm is tested with field data. The data were collected on a 2218-foot-long segment 

of I-35W between detector stations S14 and S15. The layout of the loop detectors on I-35W for the 
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southbound direction is shown in Figure 3.8. In this segment, traffic on I-35W goes southbound and 

merges onto I-35W or TH62 at the junction. There are five lanes (L1-5 from west to east in Figure 3.8) at 

the north end of the segment and three lanes for each branch after diverging, including a high-

occupancy toll (HOT) lane in the east most lane. In the morning peak, vehicle queues often propagate 

from downstream of the I-35W branch. L4 is the most congested lane during this period so Detector 6 at 

Station S15 (D6-S15) and Detector 8 at Station S14 (D8-S14) were selected as the downstream and 

upstream detectors, respectively. L3 is less congested because some traffic merges off of I-35W and 

onto TH62 at the junction so D5-S15 and D7-S14 were used as the adjacent detectors. Although L5 has 

even less traffic, it was not considered as an adjacent lane of L4 because vehicles rarely make lane 

changes into or out of a HOT lane. We set the following parameters: 𝐿𝑒 = 27 ft, 𝑣ℎ = 45 mph, 𝐺ℎ =

9 s, 𝑂𝑐𝑐ℎ = 3.5 s,  𝑣𝑙 = 9 mph, 𝜌𝑗𝑎𝑚 = 180 veh/mi, 𝑞𝑗𝑎𝑚 = 0 veh/h, 𝜏 = 1 s, 𝑣𝑚 = 23 mph. 

According to the proposed queue estimation algorithm, the positions of the two shockwaves can be 

calculated by Equation 3.5. The spatial length of a queue at any time and the temporal duration of a 

queue at any position in between S15 and S14 can be calculated by Equation 3.6. For the sake of 

verification, predicting the duration of the queue at S14 is the focus of the test due to the availability of 

ground truth data.  

 

Figure 3.8 Layout of loop detectors on a southbound I-35W segment 

One busy morning peak on August 5, 2015, is selected to evaluate the performance of our algorithm. 

Traffic states at upstream detector D8-S14 were estimated by a series of queuing and discharge 

shockwaves, as shown in Figure 3.9. At any time, if an estimated queuing shockwave has arrived at the 

upstream detector and no discharge shockwave has arrived afterward, the traffic state at that time is 
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estimated as a jam state; otherwise, it is estimated as a non-jam state. The ground truth is shown in 

Figure 3.9 by depicting every individual vehicle-detector actuation event at the positions of both 

upstream detector D8-S14 and downstream detector D6-S15. Each event is depicted as a bar with the 

length of its occupancy time. The color of the bar indicates different traffic states. 

During the studied period, nine queues were estimated from the proposed algorithm, as shown in Figure 

3.9. The unfinished green lines are intentionally left to show the merge of jam-slow-jam traffic as 

discussed in the previous section. On inspection, it can be seen that the estimated queues in green and 

red encompassed all of the stopped traffic (black bars) at the upstream detector, indicating that the 

queuing states at upstream were effectively estimated by the proposed algorithm. Figure 3.9 also shows 

the necessity of merging short jams. Without merging, there are roughly 37 queues at the upstream 

detector. With merging, the number is reduced to 9.  

 

Figure 3.9 Queue estimation results 

To quantitatively evaluate the algorithm, the average speed, flow rate and density were chosen as the 

measures of effectiveness (MOEs). The MOEs of the nine estimated jam states and their adjacent non-

jam states were calculated using high-resolution data from D8-S14, as shown in Figure 3.10 (a)-(c). 

Ideally, the average speed and flow rate of each jam state would be significantly lower than those of its 

adjacent non-jam states and the average density should be significantly higher than those of its adjacent 

non-jam states. In this test, however, the estimated jam states at D8-S14 are not as congested as those 

at D6-S15 because vehicles are often able to change to the less congested lane L3. Also, note that the 

jam state at D8-S14 contains not only stopped traffic but also slow traffic after the merge. Despite all of 

these confounding factors, most of the estimated jam states can be verified by the ground truth data, 

especially for long queues #2, #3 and #5. The estimation of queue #6 is worth noting; Figure 3.9 shows 
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that there is no single vehicle-actuation event that has a long occupancy time (i.e., black bar) at D6-S15. 

Rather, the onset of the queuing state was identified by noting a long gap between two consecutive 

events, as discussed in Section 3.5.1.1. By doing this, the jam state at D8-S14 was successfully estimated 

by queue #6. No queues were undetected in the test, but there was one false alarm. Queue #7 is 

triggered by one single long occupancy event at D6-S15, but this queue did not propagate to the 

upstream as estimated. One possible reason for the miscalculation is the heterogeneity of human 

drivers. Conservative drivers may slow down their vehicles long before they join the queue. In this way 

they can avoid fully stops on freeway, thus smoothen the traffic. Lastly, the prediction ability is shown in 

Figure 3.10 (d). On average, the algorithm can predict traffic state changes at the upstream detector 

more than 90 seconds before the change actually occurs. Discharge states can usually be predicted 

earlier because the speed of the discharge shockwave is lower than that of the queuing shockwave. 

 

Figure 3.10  MOEs of the field test: (a) speed; (b) flow rate; (c) density; (d) prediction ability 

In this field test, stopped traffic is defined by the presence of vehicles with speed lower than 5 mph. In 

practice, the definition of stopped traffic should be predefined by traffic operators and then the 

thresholds such as 𝐺ℎ, 𝑂𝑐𝑐ℎ, 𝑣ℎ and 𝑣𝑙  should be carefully chosen. For example, it can be expected that 
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the larger 𝐺ℎ and 𝑂𝑐𝑐ℎ are, the fewer queues the algorithm estimates thereby resulting in more 

undetected queues but fewer false alarms. 

3.5.3 Algorithm of Triggering Queue Warning Messages  

Triggering queue warning messages is based on the real-time estimation of queue length. Note again 

that both the queue estimation algorithm and message triggers are lane-based. Once a stopped queue 

begins and propagates a certain distance, the queue warning message will be shown on the VMS of that 

lane. The distance threshold value should be large enough to confirm the queuing state and avoid false 

alarms, but not so large as to delay the message for too long. The distance threshold value was selected 

to be 1000 feet by trial-and-error. Once the queue is cleared at the downstream detector or has already 

reached the location near the VMS, the warning messages are no longer displayed. The communication 

delay between the queue warning system and message activation system should be considered as well. 

The algorithm was tested by RTMC engineers before its implementation and validated by checking field 

videos with the help of the MTO. 

3.6 SYSTEM DEPLOYMENT AND EVALUATION 

With the queue estimation algorithm described in Chapter 4, a queue warning system was developed 

for the I-35W site. With help from MnDOT engineers the message “SLOW TRAFFIC AHEAD” was selected, 

and the system was tested for 6 weeks (including 3 weeks testing without showing messages). The 

dynamic queue warning system was deployed on September 27, 2016. Figure 3.11 shows that the queue 

warning system was displaying a warning message specifically to the third lane from the left. 

 

Figure 3.11 The queue warning system displaying warning message 
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3.6.1 Queue Warning System Development  

The queue warning system for the I-35W site is shown in Figure 3.12. Real-time high-resolution vehicle 

actuation data were collected from three detector stations, namely S12, S14 and S15, and archived in 

the SMART-Signal server database. The queue warning software was developed to retrieve these data, 

estimate the queue length every second based on the algorithm proposed in Section 3.5.1, and then 

decide when and where to show the message of “SLOW TRAFFIC AHEAD”. The messages were read by 

the Intelligent Roadway Information System (IRIS) from MnDOT and then displayed on the 

corresponding VMS located upstream of S12. 

 

Figure 3.12 System structure 

Note that the queue estimation and decision to show the warning messages are done on a lane-by-lane 

basis. Generally, the traffic states of each lane (except HOT lane) are monitored separately at 

downstream detector stations S14 and S15. If a stopped queue is detected and the estimated queue 

length exceeds a certain threshold on any lane, the warning message will be activated on the VMS of 

that lane. Considering the fact that vehicles in some lanes may change lanes together (e.g., Lane 1 and 

Lane 2 to the direction of TH62), warning messages on these lanes are shown together if the queue 

length is long enough on any of the lanes. Once the downstream queue is discharged, the warning 
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messages will be turned off. If queues spill back to S12, the system will also stop giving the warning 

message on the corresponding lane so as to avoid confusing drivers that have already joined the queue. 

A snapshot of the software is shown in Figure 3.13. The upper middle pane of the software interface 

shows the current time. A static map of the place of interest is shown in the middle pane. The middle 

left and middle right panes show real-time traffic information including the timestamp, occupancy time, 

headway, gap, and speed of each vehicle passing by the corresponding detector station. The lower left 

and lower right panes show the estimated queue length when under queuing conditions. There are four 

black boards (VMS) on the upper part of the software with each one corresponding to one lane (HOT 

lane is not included). The left two VMSs (Lane 1 and Lane 2) correspond to the left lanes that merge 

onto TH62 direction. The rightmost VMS (Lane 4) corresponds to the lane that goes to I-35W direction. 

The VMS on Lane 3 corresponds to the middle lane that can either exit onto TH62 or stay on I-35W. 

 

Figure 3.13 A snapshot of the developed software 

To facilitate the trial run of the queue warning system as well as to ensure safety, all the data flow are 

within the internal network of MnDOT. The software is running on a MnDOT computer (name of the 

computer: MDROSITS8STRASS; IP address: 10.69.3.29), which also serves as the server of the SMART-
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Signal system that archives high-resolution traffic data in real time. In MnDOT, the VMS is activated by 

IRIS at the request of an external system by using the "msg feed" protocol. Once the developed software 

decides to put a message on VMS, it will write the message to a text file. This text file can be reached at 

http://10.69.3.29/msgfeed/test.txt within MnDOT’s internal network. IRIS polls this HTTP URL every 30 

seconds and updates the VMSs accordingly. 

3.6.1.1 Evaluation of Warning Messages 

Following the advice of MnDOT, this task evaluates the warning message of “SLOW TRAFFIC AHEAD”. 

The data collected for evaluation are mainly from loop detectors. Video data are also used to check the 

effectiveness of the system. To compare the results, 3 weeks’ data before the deployment (from 

September 6 to September 26, 2016) and 3 weeks’ data after the deployment (from September 28 to 

October 18, 2016) were used. A total of 1,176 warning messages were triggered by the queue warning 

system for the before case. Note again that those warning messages were not really shown on VMS. A 

total of 999 warning messages were triggered by the queue warning system for the after case. Those 

warning messages were shown on the VMS. For each message, the period of interest is the period when 

the message is turned on plus one minute after the message is turned off. The one-minute post-

message period is also considered because the effect of warning messages extends beyond the time of 

deactivation.  

3.6.1.2 Hypothesis Testing for Changes Before/After Deployment 

Based on the before and after data collected, the mean value and standard deviation of speed were 

calculated for each detector and for each message and hypothesis testing was then carried out to see 

whether there was significant change before and after the deployment of the system (note that 

consecutive messages are combined into one single message in this part). Take the mean speed at 

detector station S14 (see Figures 3-15 and 3-16) as an example. 

In order to confirm whether the mean speed after deployment is statistically significantly lower than 

that before deployment, the following hypothesis test is performed: 

Two-sample hypotheses concerning the means: 

𝑋1𝑖 = average speed during 𝑖th message, before the deployment; 

𝑛1 = number of separate messages, before the deployment (consecutive messages are 

combined); 

𝑋2𝑗 = average speed during 𝑗th message, after the deployment; 

𝑛2 = number of separate messages, after the deployment; 

𝛼 = 0.05; 

http://10.69.3.29/msgfeed/test.txt
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Assume 𝑋1𝑖~𝑁(𝜇1, 𝜎1
2), 𝑋2𝑗~𝑁(𝜇2, 𝜎2

2) 

𝐻0: 𝜇1 ≥ 𝜇2, i.e. mean speed does not increase after the deployment. 

𝐻1: 𝜇1 < 𝜇2, i.e. mean speed increases after the deployment. 

Rejection region: 𝑡𝜐1+𝜐2 ≤ 𝑡𝜐1+𝜐2(𝛼) ; 

𝜐1 = 𝑛1 − 1; �̅�1 =
1

𝑛1
∑ 𝑋1𝑖

𝑛1
𝑖=1 ; 𝑠1

2 =
1

𝑛1−1
∑ (𝑋1𝑖 − �̅�1)2𝑛1

𝑖=1 ; 

𝜐2 = 𝑛2 − 1; �̅�2 =
1

𝑛2
∑ 𝑋2𝑗

𝑛2
𝑗=1 ; 𝑠2

2 =
1

𝑛2−1
∑ (𝑋2𝑗 − �̅�2)2𝑛2

𝑗=1 ; 

𝑆𝑝
2 = √

(𝑛1−1)𝑠1
2+(𝑛2−1)𝑠2

2

𝑛1+𝑛2−2
; 

𝑡𝜐1+𝜐2 =
�̅�1 − �̅�2

√
𝑆𝑝

2

𝑛1
+

𝑆𝑝
2

𝑛2

 . 

The results are shown in the Table 3-3.  

Table 3-3 Hypothesis test (test hypothesis that mean speed at S14 remains the same) 

 𝒏𝟏 𝒏𝟐 𝒕𝝊𝟏+𝝊𝟐 𝒕𝝊𝟏+𝝊𝟐(𝜶) Conclusion p-value 

S14 – Lane 1 160 142 2.6768 -1.6499 Accept 𝐻0 0.9961 

S14 – Lane 2 160 142 0.1257 -1.6499 Accept 𝐻0 0.5500 

S14 – Lane 3 217 181 -2.1832 -1.6487 Reject 𝐻0 0.0148 

S14 – Lane 4 59 60 0.6246 -1.6580 Accept 𝐻0 0.7333 

 

With a confidence level of α = 0.05, it is concluded that the null hypothesis (H0) that the mean speed on 

Lane 3 at S14 does not increase after the deployment should be rejected. Therefore, the speed on Lane 

3 at S14 after the deployment is significantly higher than that before deployment. For other lanes, there 

is no evidence that the speed increases. 
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3.6.1.3 Speed Changes at S12 Before/After Deployment 

The mean value and standard deviation for speed at three lanes of detector station S12 are shown in 

Figure 3.14. Note that detector data on Lane 3 at S12 are not available. Overall, the speed did not 

change much before and after the deployment of the system. The mean speeds for Lanes 1, 2, and 4 

shown in Figure 3-14 The hypothesis testing did not show any statistically significant change between 

the before values and the after values. The main reason for this lack of variation is the fact that detector 

station S12 is very close to the position of VMS where drivers may not have enough time to take any 

action after seeing the messages.  

3.6.1.4 Speed Changes at S14 Before/After Deployment 

The mean value and standard deviation for speed at three lanes of detector station S14 are shown in 

Figure 3.15. The hypothesis testing showed with 95% confidence level (α=0.05), that after the 

deployment of the system, the mean speed on Lane 1 at S14 decreased, the mean speed on Lane 3 at 

S14 increased, the standard deviation of speed on Lane 1 and Lane 4 at S14 decreased, and the standard 

deviation of speed on Lane 3 at S14 increased.  

 



 

58 

 

 

Figure 3.14 Mean value and standard deviation of speed at S12 
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Figure 3.15 Mean value and standard deviation of speed at S14 
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Figure 3.16 Mean value and standard deviation of speed on Lane 3 at S14: TH62 direction and I-35W direction 
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It is expected that the queue warning system can help smooth traffic and, in the case of traffic queues 

building up from downstream locations, it is hoped that drivers can decelerate in advance after seeing 

the warning messages shown on upstream VMS to avoid dangerous situations. To this end, the 

decreased standard deviation of speed in Lane 1 and Lane 4 at S14 after the deployment of the system 

showed positive effects. However, the standard deviation of speed at Lane 3 at S14 increased after 

deployment. To find the reason for this counter-intuitive result, further analysis was conducted and is 

contained in the following sections. 

3.6.1.5 Speed Changes at the Diverging Location: Lane 3 at S14 

Note that the counter-intuitive result came from Lane 3 at S14, which has two diverging lanes toward 

downstream locations. Vehicles on Lane 3 at S14 can go to either I-35W direction or TH62 direction. 

Also, vehicle queues can originate from either I-35W or TH62 and propagate back to Lane 3 at S14. 

Therefore, the warning messages on Lane 3 were further divided into two groups by queue source. As 

shown in Figure 3.16, it was found that when the queue came from I-35W, the mean value and standard 

deviation of speed on Lane 3 at S14 did not change much but when the queue is from TH62, the mean 

value and standard deviation of speed on Lane 3 at S14 increased.  

3.6.1.6 Speed at Further Downstream in TH62 direction 

To find the reason for the increase of the standard deviation of speed in Lane 3 at S15, especially when 

the messages are triggered by queues from TH62, the speed was checked at detectors further 

downstream, namely S1718 on TH62. Because high-resolution data at S1718 was not available, the data 

extraction found on MnDOT’s website was utilized to get the mean speed for every 30-second interval, 

as shown in Figure 3.17. The mean speeds were significantly different in different lanes at S1718 

because these three lanes go to different downstream directions of TH62 (eastbound and westbound). 

More importantly, the mean speeds in Lane 3 at S1718 were extremely low (7.2 mph and 7.3 mph), 

indicating that the downstream eastbound direction of TH62 was badly congested. In other words, the 

queues on Lane 3 at S1718 were not cleared during the studied period, and thus had a great impact on 

the traffic on Lane 3 at S14. This may account for the difference in results between Lane 3 at S14 and the 

other lanes. 
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Figure 3.17 Mean speed at S15: further downstream in I-35W direction 

 

3.6.1.7 Speed Difference across Detector Stations 

The following component of the evaluation checks whether queue warning messages help decrease the 

speed difference across detector stations. Two pairs of consecutive detector stations were studied, 

namely, S12 and S14 and S14 and S1718. The mean values of the speed differences between Stations 

S12 and S14 were more concentrated around 0 after the deployment. If ±5 mph was chosen as the 

satisfactory speed difference range, almost all of the pairs had speed differences within this range after 

deployment (Figure 3.18). For S14 and S1718 in TH62 direction, the speed difference in Lane 3 remained 

roughly constant at a large value but the speed differences in Lane 1 and Lane 2 were significantly 

reduced and concentrated in the satisfactory range (±5 mph) (Figure 3.19) Overall, the results show 

evidence that queue warning messages help smooth traffic by reducing the speed difference across 

detector stations. 
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Figure 3.18  Speed difference across Stations S12 and S14 

 

Figure 3.19  Speed difference across Stations S14 and S1718 
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3.6.1.8 Speed Changes in Morning Peak and Evening Peak 

Based on field observations, I-35W tends to be congested during morning peak period whereas TH62 

tends to be congested during evening peak period. These two cases were selected for further study. 

From the data collected, 59.4% of the warning messages triggered from I-35W were in the morning 

peak, and 57.8% of the warning messages triggered from TH62 were in the evening peak. Comparing 

before and after cases, no significant change of speed at S12 was found. At S14, after deployment, the 

standard deviation of speed on Lane 4 during the morning peak decreased (Figure 3.20), the mean value 

and standard deviation of speed on Lane 3 (message triggered from TH62 direction) during the evening 

peak increased, and the standard deviation of speed on Lane 1 during the evening peak decreased 

(Figure 3.21). The results were similar to those derived from the all-day data in Section 3.6.1.4 and 

Section 3.6.1.5. 

 

 

Figure 3.20  Mean value and standard deviation of speed in morning peak in I-35W direction 
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Figure 3.21  Mean value and standard deviation of speed in evening peak in TH62 direction 

3.6.1.9 Summary of Evaluation Results 

With the evaluation results above, we come to the following preliminary conclusions. 

1. In general, travelers on I-35W responded to the queue warning message “SLOW TRAFFIC 

AHEAD” and the traffic conditions with and without messages showed statistical differences. 

2. The queue warning system was able to smooth the traffic by reducing the speed variance at 

the downstream locations and speed difference between the upstream and downstream 

locations thereby reducing the risk of rear-end crashes and potentially improving mobility.  

3. It took drivers some time from seeing the messages to taking actions such as slowing down 

their vehicles. As a consequence, queue warning messages had little effect on the traffic 

conditions near the VMS (S12 in this case) but had an clear impact on the traffic at the 

downstream locations (S14 in this case).  

4. The standard deviation of speed at the fork in the road was increased when the traffic 

condition at the location further downstream on TH62 was continually congested. This may be 

due to the fact that the traffic state in this case was influenced more by the downstream 

congestion rather than the upstream arrivals which kept the queue warning message from 

being effective. 

There was no significant difference between the warning message’s effects on the morning peak and the 

evening peak. 
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3.7 DISCUSSION 

Rear-end crashes are the most frequent type of crashes observed on freeways and research has shown 

that freeway rear-end crashes tend to occur in extended congested traffic situations where the speed 

variation is large, e.g. end-of-queue locations. One of the prevailing active traffic management strategies 

is the ILCS system that displays messages to warn drivers about upcoming queues and caution them to 

adjust their speed to avoid potential rear-end collisions. One main component of such active traffic 

management strategies is the real-time queue estimation algorithm which depends highly on the data 

being utilized. 

In this project, a real-time queue warning system was developed and deployed on a freeway segment on 

I-35W south of Minneapolis, MN. Benefiting from a previously-developed data collection system , five 

sets of data collection devices were installed on the segment of interest. High-resolution detector 

actuation data were then collected from the field. By taking advantage of such high-resolution event-

based data, every traffic state change at detector locations can be identified within a few seconds. 

Shockwave analysis is adopted to develop the real-time queue estimation algorithm. The algorithm runs 

locally in any freeway segment between an upstream detector and a downstream detector, estimating 

the length and duration of a queue once the queue is detected by the downstream detector. When the 

queue extends upstream of the upstream detector, the algorithm stops estimating it with further 

estimation of the queue being provided by the same algorithm running in the next segment upstream. 

Due to the differences in traffic states between lanes (e.g., lanes to different directions of a diverge 

junction), one instance of the algorithm runs for each lane. The impact of lane changes is considered as 

well by analyzing traffic data from detectors on adjacent lanes. The algorithm also has limited capability 

of prediction as to the time when a queue will be formed or cleared at any position in this segment nor 

can it predict the queue length in this segment at any time in the near future. The proposed algorithm 

was tested with field data and validated by video captured in the field.  

The queue warning system was tested in the field for three weeks, showing the queue warning message 

“SLOW TRAFFIC AHEAD” to travelers when a queue was estimated at downstream locations. Before 

that, the system had also been running for three weeks without actually showing messages. The high-

resolution data from loop detectors, the queue warning system log files archiving the start time, 

duration, and location of triggered messages (including those not shown on VMS before field test), and 

videos from MnDOT cameras were used to evaluate the queue warning system. By comparing the 

before and after cases, the impacts of warning messages were studied. Promisingly, for most of the 

studied locations, the study showed that queue warning messages helped to reduce the speed variance 

near the queue locations and the speed difference between upstream and downstream locations. This 

also implies a satisfactory level of compliance rate by drivers.  
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 CONCLUDING REMARKS 

The research described in this report is aimed at developing and field-testing two queue warning 

systems following different philosophies in regard to rear-end collision safety. The MQWA system 

philosophy follows the premise that freeway rear-end collisions tend to occur in extended stop-and-go 

traffic or at end-of-queue locations. The MQWA system prototype was deployed and evaluated in 

Minneapolis, MN, on I-35W southbound where conditions supported this hypothesis. QWARN is based 

on the hypothesis that not all congestion events are dangerous and that certain traffic conditions that 

are crash prone regardless of whether they result in standing queues or not. Such CPCs can be isolated, 

fast moving shockwaves, involving only a small number of vehicles in the deceleration-stop-acceleration 

cycle. One location where such conditions have been identified and result in more than 100 crashes per 

year is the westbound section of I-94 in downtown Minneapolis, MN. This location was selected for the 

QWARN deployment and evaluation.  

Although, each system was evaluated using different methodologies, both have demonstrated a positive 

effect on driver behavior. The MQWA system on I-35W has smoothed the traffic flow by reducing the 

speed variance at downstream locations and speed difference between upstream and downstream. The 

evaluation period (three weeks) was short so no data on the actual influence of the system on crash 

rates were collected. QWARN’s deployment on I-94 has resulted in a 22% reduction in crashes and a 

54% reduction in near-crash events during a three-month evaluation period. In both cases, the short 

evaluation periods can only show promise and longer traffic safety studies are needed to show whether 

the systems will have a lasting effect on safety in their respective corridors. Following the reporting of 

the evaluation results, MnDOT has lifted the restriction that the system only operate between noon and 

8 p.m. and now allows the alarms to be displayed any time the system detects a crash-prone condition. 

At the time this report was written, both systems were in operation. Although, there are no current 

plans to expand the deployment of the MQWA system, MnDOT expressed the desire to deploy QWARN 

in two upstream locations on the I-94 WB corridor in anticipation of CPCs following the beginning of 

construction on the stretch of I-94 QWARN is currently deployed on. Although funding has not been 

secured yet for such an expansion, the Minnesota Traffic Observatory is continuing to refine QWARN as 

well as the collect video and detector data to facilitate a longer-term evaluation.   
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